Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
37
Добавлен:
26.03.2023
Размер:
1.12 Mб
Скачать
Drug Delivery
With the rapid development of nanotechnology, some nanomaterials have already been explored as drug delivery carriers for the purpose of improving the delivery of non-water-soluble drugs, of targeting specific cell or
Figure 11. Single nucleotide polymorphisms experiment. When target for each corresponding letter probes was added, that letter pattern vanished. Reprinted with permission from [175], H. K. K. Subramanian, et al., The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. Nano Lett. 11, 910 (2011). © 2011, American Chemical Society.
J. Biomed. Nanotechnol. 10, 2350–2370, 2014

DNA Nanotechnology and Its Applications in Biomedical Research

Sun et al.

 

 

 

Figure 10. Schematic showing of the 4 × 4-tile-formed DNA 2D barcode array and its detection mechanism. (a) shows the tile design, different-colored array formation, and color changes after binding with target molecules; (b) the mechanism of the interaction between the probe and target molecules. Reprinted with permission from [170], C. Lin, et al., Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing. Nano Lett. 7, 507 (2007). © 2007, American Chemical Society.

technique, makes DNA nanostructures ideal for label-free

with electrochemical techniques, they were able to detect a

nucleic acids detections, which can avoid the tedious pro-

variety of interested targeted molecules.177–180 Research on

cess of the multi-coded fluorescence DNA array system.

patterning DNA nanostructures on gold surfaces with the

An origami chip for label-free RNA detection173 was

help of lithography also made great progress.181–184 The

first reported by Yan’ group; a rectangular DNA origami

combination of top-down and bottom-up technology will

Delivered by Publishing Technology to: Rice University

tile was used as the chip, multiple single-stranded DNA

greatly help DNA nanostructures’ application in biosens-

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

probes targeting specific RNA sequences were precisely

ing field.

Copyright: American Scientific Publishers patterned on the origami scaffold; upon binding of the tar-

geted RNA molecules on DNA probes, a designed double helical DNA-RNA-V-Shaped junctions formed, created designed features visualized by AFM. Index spots were created on each origami tile so that the detection tiles could be differentiated, allowing for simultaneously, multi-target detection. Later, an asymmetric map-like DNA origami tile was used to replace the rectangular tile, which eliminated the symmetry feature, avoids the use of index spots.174

A different approach was used to detect single nucleotide polymorphisms on DNA origami.175 Four visible letters features corresponding to A, T, G, C were created first on the origami, with each letter contains distinct sequences; when target DNA strand with the right nucleotide variation was added onto the surface of the origami, the letter strand was replaced and the corresponding letter pattern disappeared. Most recently, DNA origami single-molecule-beacons were prepared also for label-free detection. By adding different control features, the devices were able to detect a range of targets, including miRNA and proteins,176 by AFM imaging. A DNA tetrahedral structure was used by Fan’s group to improve the conventional DNA-on-gold surface microarray detection. By attaching the DNA probes on the vertex of the DNA tetrahedron, which deposited onto the gold surface through thio groups modified on three of its vertexes, the accessibility of the probes vastly improved. Combining

2360

J. Biomed. Nanotechnol. 10, 2350–2370, 2014

Sun et al.

 

DNA Nanotechnology and Its Applications in Biomedical Research

 

 

tissues, of improving cell-uptake of small drugs, of real-

cytotoxicity test showed no significant cell death was

time monitoring the delivery process, among others. Some

observed, which proved DNA nanotubes are biocompati-

drug delivery nanosystems, including liposome and poly-

ble as expected. But the relative large size of the DNA

mer nanoparticles, have already had some success and

nanotubes they used, 10–40 m, might make the nano-

been approved for clinical use, but still haven’t had signif-

tubes difficult to maintain their designed structure during

icant impact yet.185 Developing biocompatible, multifunc-

the cell uptaking process.

tional drug delivery nanosystems remains the key for the

Sleiman’s group later reported their DNA nanotubes

application of nanotechnology on drug delivery. It is desir-

with controlled length, assembled with rolling-circle-

able to develop multifunctional drug nanocarriers, which

amplification (RCA), had good cell-uptaking efficacy, and

have cage-like structures that can encapsulate one or multi-

they also demonstrate the integrity of their DNA nano-

ple drugs inside the cage, so the drugs will only be released

tubes inside the human cervical cancer (HeLa) cells.104

when the nanocarriers get to the targeted sites and receive

The more compact DNA tetrahedron nanostructure devel-

specific signals; the drug nanocarriers also should have

oped by Turberfield’s group50 51 was later explored as

modification sites for targeting ligands to deliver drugs to

another potential drug delivery carrier. The DNA tetra-

interested cell or tissues; the drug nanocarriers also should

hedron structure was first tested for its resistance against

contain imaging reagents (or they are luminescent them-

enzymatic digestions,187 and the results showed that the

selves) allowing real-time monitoring the drug delivery

DNA tetrahedron structure has superior stability over DNA

processes and their efficacy.

 

single strands against enzymatic digestions. In 10% fetal

DNA 3D nanostructures have all the features to be

bovine serum (consisting complex mixture of nucleases

promising candidates for multifunction drug delivery:

and other proteins), the DNA tetrahedron structure can

they are biocompatible; can be easily modified at multi-

be stable for 42 hours, comparing to only 0.8 hours for

ple addressable positions; some well-developed cage-like

DNA single strands. This indicates that the DNA tetra-

DNA 3D structures have the

cavities to accommo-

hedron structure can exist inside cells with integrity for

date drug cargos; and 3D DNA nanostructures can be

a certain period of time, and could be used as drug

reconfigurable with special designs and control methods.

delivery carrier. Later, the transfection efficacy of this

In recent years, some excellent researches have already

DNA tetrahedron nanostructure into plated human embry-

been done to explore the application of DNA nano-

onic kidney cells was tested. Fluorescence dyes, Cy5

Delivered by Publishing Technology to: Rice University

structures as multifunctional drug delivery nanosystems.

and Cy3 were attached to the DNA tetrahedron at spe-

 

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

A dual-functionalized DNA nanotube structure was first

cific positions, fluorescence study results clearly showed

 

Copyright: American Scientific Publishers

used to deliver covalently linked fluorescence dye Cy3

the DNA tetrahedron can easily transfect into the cells,

into the nasopharyngeal epidermal carcinoma KB cells by

and the DNA tetrahedron structure remain intact in cells

Mao’s group;186 folate molecules were conjugated onto

even 48 hours after transfection.188 Then, Fan’s group

the DNA nanotube as targeting ligands for targeting folate

attached unmethylated cytosine-phosphate-guanine (CpG)

receptors (FRs) over-expressed on the surface of the KB

motifs to the DNA tetrahedron structure for immunostim-

cells (see Fig. 12). Comparing to single-stranded DNAs,

ulatory study (see Fig. 13),189 once getting into the cells,

fluorescence images clearly showed that some of the

the therapeutic CpG oligodeoxynucleotides will bind and

DNA nanotubes transfect into the targeted cells, and the

allosterically activates Toll-like receptor 9 (TLR9), which

 

 

then activates downstream pathways to induce immunos-

 

 

timulatory effects, producing high-level secretion of vari-

 

 

ous pro-inflammatory cytokines including tumor necrosis

 

 

factor (TNF)-R, interleukin (IL)-6, and IL-12. They found

 

 

that the DNA tetrahedron structures could noninvasively

 

 

and efficiently enter macrophage-like RAW264.7 cells

 

 

without the aid of transfection agents. And their ELISA

 

 

assays results showed that functional CpG-DNA tetrahe-

 

 

dron nanostructures dramatically induced the production of

 

 

various proinflammatory cytokines including tumor necro-

 

 

sis factor (TNF)-R, interleukin (IL)-6, and IL-12. The level

 

 

of immunostimulatory effects of CpG attached on DNA

 

 

tetrahedron nanostructures increased by 9 to 18 times com-

Figure 12. Schematic showing of

the construction of the

paring to free CpG oligodeoxynucleotides.

dual-functionalized DNA nanotube and its delivery process.

Langer and Anderson’s group later tested the therapeu-

(a) The design of the DNA nanotube; (b) cell targeting and

tic potential of DNA tetrahedron nanostructures as siRNA

delivery mechanism. Reprinted with permission from [186],

nanocarrier in vivo.190 They used DNA tetrahedron nano-

S. H. Ko, et al., DNA nanotubes as combinatorial vehicles for

structures as nanocarriers, attached anti-luciferase siRNA

cellular delivery. Biomacromolecules 9, 3039 (2008). © 2008,

American Chemical Society.

 

onto specific sites of the DNA tetrahedral, also with

2361

Sun et al.

DNA Nanotechnology and Its Applications in Biomedical Research

Figure 13. Schematic showing of the assembly of CpG bearing DNA tetrahedron and its immunostimulatory effect. Reprinted with permission from [189], J. Li, et al., Selfassembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783 (2011). © 2011, American Chemical Society.

conjugated folate (FA) targeting folate receptor overex-

Figure 14.

Schematic showing of DNA tetrahedral nano-

structures as scaffold for the assembly of adjuvant-antigen

pressing KB cells. Either by tail-vein injection or intratu-

vaccine complex. The CpG adjuvant molecules shown in pur-

mor injection, folate (FA)-conjugated DNA tetrahedra with

ple hangers at the outside of the tetrahedral; the streptavidin

anti-luciferase siRNA were delivered into mice. By silenc-

antigen shown in red. The vaccine complexes were injected

ing gene of firefly luciferase expressing KB xenografts,

into mice, and bound specifically to B cells and nonspecifi-

cally to dendritic cells and macrophages. The complexes are

one should expect a decrease of bioluminescent intensity

internalized by the three types of antigen-presenting cells,

in the tumor, their results clearly showed that a decrease

disassembled, and the individual peptide antigens are subse-

of 60% in bioluminescent intensity for both tail-vein and

quently presented to T cells to activate B cell response and

intratumor injections, which means that DNA tetrahedron

antibody production. Reprinted with permission from [191],

nanostructures have a promising future as nanocarriers for

X. Liu, et

al., A DNA nanostructure platform for directed

assembly of synthetic vaccines. Nano Lett. 12, 4254 (2012).

siRNA and possible other drugs molecules.

 

 

© 2012, American Chemical Society.

Yan’s group later used DNA tetrahedral nanostructures

 

 

as platform for the assembly of synthetic

vaccine, and

 

 

 

 

191

 

 

 

tested the immune

Delivered by Publishing Technologyshow anto:efficientRice Universityand specific internalization for killing

response in vivo.

 

They utilized

 

 

 

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

the addressability of the DNA tetrahedral nanostructures,

epithelial cancer cells.

 

Copyright: American Scientific Publishers

attached a model antigen, streptavidin (STV), and a rep-

Krishnan’s group used their DNA icosahedral nano-

resentative adjuvant, CpG oligodeoxynucleotides onto the

structures made from DNA five-way junction motif as

designed sites, and assembled a synthetic vaccine complex

nanocarrier cages, encapsulated Fluorescein isothiocyanate

(see Fig. 14), once the vaccine complex were injected into

(FITC)-Dextran (FD) as cargos inside the cages.194 Their

mice, they bound specifically to B cells and nonspecif-

results showed that the host–cargo complex was uptaken

ically to dendritic cells and macrophages, and activated

only by specific cells (coelomocytes) in Caenorhabditis

T cells and triggered antibody production. This synthetic

elegans that expressed the anionic ligand-binding receptor

vaccine complex has similar size and shape as a natural

(ALBR). Later, by redesigning their icosahedral structures,

viral particle. Their results showed that, comparing to free

they divided their icosahedra into two half parts, which

CpG plus free STV, fully-assembled tetrahedral-STV-CpG

added a cyclic-di-GMP (cdGMP) binding aptamer struc-

synthetic vaccine complex generated a much higher level

ture into the middle connection part which associating the

of anti-STV IgG antibodies in vivo. And no antibody was

two half parts together. Then their DNA icosahedral struc-

detected against the DNA tetrahedral structures alone. This

tures become drug delivery nanosystems capable releas-

experiment shows that DNA tetrahedral structures not only

ing drug cargos in a controlled manner, in response to an

can serve as a nanocarrier system for drug, but also can

external trigger, namely cyclic-di-GMP (cdGMP).195

be used to assemble vaccine like structures for biomedical

All the polyhedral DNA nanostructures mentioned

purpose.

 

 

 

above showed great promise as efficient drug delivery

Polypod-like DNA structures were also developed for

nanocarriers, even in a controlled-release function. But

efficient delivery of immunostimulatory CpG to immune

one of the concerns regarding the polyhedral DNA nano-

cells.192 Their results showed that increasing pod num-

structures is that they all have porous surfaces, which

ber is directly linked with efficient cellular uptake, and

could limit their application as totally-closed cage-like

large amount of cytokine production from TLR9-positive

drug delivery nanosystems. DNA origami 3D nano-

cells. A distinct five-point-star motif and aptamer-

structures have their structural advantages as topological-

conjugated six-point-star motif were developed to inter-

closed drug delivery nanocarriers. Some wonderful works

molecularly construct DNA icosahedra as a nanocarrier

have already done to explore DNA origami structures as

for doxorubicin.193

Aptamer-conjugated doxorubicin-

potential drug delivery nanocarriers. First, Yan’s group

intercalated DNA icosahedra (Doxo@Apt-DNA-icosa)

tested the

stabilities of different shaped DNA origami

2362

 

 

 

 

J. Biomed. Nanotechnol. 10, 2350–2370, 2014

Sun et al.

 

 

DNA Nanotechnology and Its Applications in Biomedical Research

 

 

nanostructures in lysates from various normal and can-

visualization of the intracellular location and stability of

cerous cell lines. After incubating DNA origami nano-

DNA origami;203 this technique will bring more alterna-

structures with cell lysates for up to 12 hours, they

tives to monitor the drug delivery process of DNA nano-

found the DNA origami structures were still intact.196 And

structures, especially in some environment, where small

the functional DNA origami structures could be sepa-

organic dye molecules might be difficult to stay intact.

rated from the cell lysates and maintaining their structural

Because their biocompatibility, and promising features

integrity and functionality.197

 

 

as multifunctional drug nanocarriers, DNA nanostructures

Liedl’s group then used a DNA

origami

nanotubu-

could become import nanosystems for smart, controlled

lar structure as delivery nanocarrier

for the

therapeu-

drug delivery applications. The stability concern about the

tic CpG oligodeoxynucleotides.198 Their results showed

DNA nanostructures might be solved by using stable DNA

that the DNA origami nanotube also can enter the cell

analog-DNA heterostructures,204 or by chemical modifica-

effectively and activate Toll-like receptor 9 (TLR9) and

tion DNA nanostructures at designed positions.

then the downstream pathway. A twisted DNA origami

 

nanostructure was also used for optimal delivery of the

Biomimetic Assemblies

anthracycline doxorubicin (Dox) to human breast cancer

One best way to understand the function of the living cells

cells.199 Another triangular DNA origami structure also

and cell networks, is to assemble synthetic cells or cell net-

was used for the delivery of doxorubicin anticancer drug

works, which can mimic all the functions of the living cells

to human breast cancer cell.200 In both cases, doxorubicin

and cell networks. Because of its excellent self-assembly

was attached to the DNA origami structure by intercalating

properties, DNA is a promising material for synthetic biol-

between the DNA bases.

 

 

ogy applications. Some works have already proven that

But the DNA origami nanotube198 used for the delivery

DNA nanostructures can be used for biomimetic appli-

of CpG oligodeoxynucleotides, and the two DNA origami

cations. Luo’ group created a cell-free protein-producing

structures199 200 used for doxorubicin drug delivery men-

DNA hydrogel system.205 By joining genomic DNA frag-

tioned above, all don’t have the controlled-drug-release

ments together with a DNA four-way-junction motif

function. Recently, A DNA origami nanorobot,201 with a

(called X-DNA) using ligase, they assembled a gene-

hexagonal barrel shaped cage-like structure was developed

containing DNA hydrogel system inside polydimethyl-

for controlled delivery of cargos. Two domains of the

siloxane (PDMS) moulds, thus prepared DNA hydrogel

Delivered by Publishing Technology to: Rice University

DNA origami barrel structure are covalently attached in

pads with well-defined dimensions with controlled poros-

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

the rear by single-stranded scaffold hinges; two specific

ity. When immersed in cell extracts containing compo-

Copyright: American Scientific Publishers

DNA aptamer–based locks are created to close the barrel

nents, such as RNA polymerase and ribosome, the DNA

in the front. Once a correct combination of two protein

hydrogel pads can serve as gene template for in vitro cell

antigen are met, the aptamers will undergo target-induced

free protein synthesis. They tested a total of 16 different

switching between an aptamer-complement duplex and

protein-producing DNA hydrogels containing 16 different

an aptamer-target complex, in turn, open the barrel, and

genes, and successfully produced all 16 proteins includ-

release the inside payloads. In their experiment, different

ing membrane and toxic proteins. Their results proved

aptamer-based locks were used for testing the open and

that their DNA hydrogel system can serve as a general

close function of their DNA origami nanorobot; and differ-

protein production technology. Their work represented an

ent antibody payloads were added into the nanorobot cage

important milestone for the use of DNA nanostructures

to investigate their nanorobot application on interfering

on engineering higher functional complexity in synthetic

with cell signaling pathways. Their results clearly showed

biological systems.206

their DNA origami nanorobot can release drug payloads in

Also it is important for biomedical research to gain clear

a controlled manner, and can carry multiple drug payloads

information about individual cells, and cell-cell interac-

at the same time. This is big step towards developing a

tions. Krishnan’s group developed a DNA nanomachine

multifunctional controlled drug delivery nanosystem.

system based on I-motif DNA. This DNA nanomachine,

One concern about DNA origami structure as drug

called the I-switch, consists of two DNA duplexes con-

delivery nanocarrier is that it requires too many short

nected to each other by a flexible hinge and bearing cyto-

DNA staple strands to build; some of the staple strands

sine rich single-stranded overhangs at the duplex termini.

might possess biological effects to the cell by themselves.

At acidic and neutral pH conditions, the I-switch DNA

A Rolling-Circle-Amplification (RCA)-based approach to

nanomachine will adapt “closed” and “open” conforma-

fold well-defined DNA origami nanostructures with only

tions respectively. By attaching a pair of fluorescent dyes

several staple strands was developed recently, and was

at designed positions of this I-switch DNA nanomachine,

used as efficient delivery carriers for CpG immunos-

it forms the molecular basis of a fluorescence resonance

timulatory drugs;202 this approach might pave the way

energy transfer (FRET)-based pH sensor. They used this

to simplify the structure design of other DNA origami

DNA nanomachine successfully mapped spatiotemporal

nanocarriers to eliminate possible interfering DNA strands.

pH changes associated with endosome maturation inside

Also a label-free fluorescent probe

was developed for

living cells in culture;207 and later in multicellular living

J. Biomed. Nanotechnol. 10, 2350–2370, 2014

 

 

2363

SUMMARY
DNA nanotechnology has seen its rapid growth in the past two decades. The development of precisely controlled nanoscale assemblies of 2D and 3D DNA nanostructures, combined with other technology developed from chemistry, material science, physical science, and biotechnology, has made DNA nanotechnology a promising means to be applied in better understanding biological phenomenon
J. Biomed. Nanotechnol. 10, 2350–2370, 2014

DNA Nanotechnology and Its Applications in Biomedical Research

 

 

 

 

 

 

 

 

 

Sun et al.

 

 

 

organisms, Caenorhabditis elegans;208 and most recently,

the DNA origami structures at the gate of glass nanocap-

they used two distinct DNA nanomachines within the

illaries. By tuning the pore size they were able to control

same living cell to simultaneously map pH gradients along

the folding of dsDNA passing through the nanopore; and

two different but intersecting cellular entry pathways,209

by specific introduction of binding sites (a short ssDNA

the furin retrograde endocytic pathway and the transfer-

with designed sequence) in the DNA origami nanopore,

rin endocytic/recycling pathway. This approach represents

they were able to selectively detect ssDNA molecules.217

a first successful application of DNA nanotechnology on

And recently, a breakthrough was made by Dietz and

cell analysis. Liu’s group used Y-DNA motif and linkers to

Simmel’s group. Inspired by the structure of the bac-

form DNA hydrogel, served as a cover to a polydimethyl-

terial protein pore a-hemolysin, they constructed a syn-

siloxane (PDMS) chip with circular microwells at different

thetic lipid membrane channel218 made entirely from DNA

diameters are designed and prepared by soft lithography,

origami nanostructure, with cholesterol modification at

cells are trapped inside those microwells separately, one

designed positions. The barrel-like structure contains a

cell in one well.210 Since the DNA hydrogel is permeable,

stem that penetrated and spanned a lipid membrane, and

nutrients for the cell can pass through the hydrogel cover.

a cap adhered to the membrane via 26 cholesterol moi-

Also the DNA hydrogel can be specifically digested by

ety. The stem protrudes centrally from the barrel and

restriction enzymes, which open the hydrogel cover for a

consists of six double-helical DNA domains that form a

specific cell and release it. This design allows successful

hollow tube which acts as a transmembrane channel, with

single cell level analysis, and can avoid the misinterpreta-

a diameter of 2 nm and a length of 42 nm. Single-

tion for specific cell properties by bulk cell analysis.

 

 

channel electrophysiological experiments showed that the

Meanwhile, understanding the cell–cell interactions is

channel conducted an electrical current proportional to

essential to understand the function of multicellular organ-

the potential that is placed across the membrane, and

isms. Yan’s group utilized DNA 4 × 4 tiles as scaffold,

demonstrated stochastic gating-fluctuations between open

attached cell-targeting aptamers as directing reagents, suc-

and closed conformations resemble those seen in natural

cessfully aligned two types of cell into close vicinity, and

biological transmembrane protein channels. The synthetic

analyzed cell–cell interactions.211 This might be a first step

origami channel could also be used for molecular detec-

towards building multicellular organism; also might has

tion applications, as their results showed that their channel

significance in disease treatment, for example, it might fos-

was able to monitor the zipping-unzipping of DNA hair-

 

 

Delivered by Publishing Technology to: Rice University

 

 

 

 

 

 

ter the T–B cell interactions required to generate an effec-

pin structures and folding-unfolding of DNA G-quadruplex

 

 

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

 

 

 

 

 

 

 

tive immune response. The development of methods for

structures. This synthetic DNA origami lipid membrane

 

 

 

Copyright: American Scientific Publishers

 

 

 

 

 

 

 

 

the modification of cell surfaces with single-stranded DNA

channel has the potential to make great impact on biomed-

oligomers212 provided the means to use different designs

ical research, such as manipulation of the cells and drug

DNA nanoscaffold for the alignment of various interested

delivery.219 220

 

 

 

 

 

 

 

 

 

 

cells.

 

 

 

 

Later,

Howorka’s

group used

chemical modification

In nature, a lot of protein and peptide channels inserted

methods

to

prepare

DNA

origami

nanopores

which

into the

lipid bilayer membranes

of living cells act as

have better interaction with lipid membranes. First, they

transporting pathway water, ions and others for the cells’

used ethyl-modified

 

phosphorothioate

groups to

form a

normal

growth. Many

synthetic

nanopores mimic

the

 

hydrophobic belt around the DNA origami nanopores to

protein

channel were

created for

the biodetecting

and

minimize the negative charges and mimic natural pro-

biosensing purpose. DNA nanostructures have also been

tein pores.221

And

then

they

used only

two porphyrin-

explored for the application as nanopore materials,

but

based hydrophobic

tags

attached

on

the

DNA

origami

mostly as gating purpose. First, Liu’s group G-quadruplex

nanopore

to

successfully anchor

the

highly negatively

DNA was immobilized onto a

synthetic nanopore,213

charged DNA nanostructure into the hydrophobic core of

which undergoes a potassium-responsive conformational

lipid bilayers.222 Their works greatly improved the stabil-

change at a certain potassium concentration range, as a

ity of the synthetic DNA origami lipid membrane channel,

result, changed the pore size of their synthetic nanopore.

enhanced the possibility of its application in biomedical

Then Dietz’s group utilized the

permeability of DNA

 

 

 

 

 

 

 

 

 

 

 

 

research.

origami,214 applied a DNA origami nanoplate as gatekeepers for solid-state nanopores, and successfully gained control over both the geometrical and chemical specifications of solid-state nanopores.215 Keyser’s group explored different approaches. In one experiment, they inserted a DNA origami nanopore-like structure inside a solid-state nanopore,216 and employed their hybrid nanopore system for the successful detection of -DNA molecules. In another experiment, they used a DNA origami nanoplate structure with a pore opening in the middle, and attached

2364

2365
Sun et al.

DNA Nanotechnology and Its Applications in Biomedical Research

and solving biomedical problems, especially in disease

20.

D. Han, S. Pal, Y. Yang, S. Jiang, J. Nangeave, Y. Liu, and H. Yan,

early diagnosis and targeted treatment. And we can foresee

 

DNA gridiron nanostructures based on four-arm junctions. Science

that DNA nanotechnology will make even greater impacts

 

339, 1412 (2013).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.

D. Liu, M. Wang, Z. Deng, R. Walulu, and C. Mao, Tensegrity:

on biomedical research in the near future.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Construction of rigid DNA triangles with flexible four-arm DNA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgments: We are grateful to Dr. Nadrian

 

junctions. J. Am. Chem. Soc. 126, 2324 (2004).

22.

 

 

and T. H. LaBean,

H. Yan, S. H. Park, G. Ginkelstein, J. H. Reif,

C. Seeman for the courtesy images used in Figures 1 and 2.

 

DNA templated self-assembly of protein arrays and highly conduc-

We also thank the financial supports from National Sci-

23.

tive nanowires. Science 301, 1882 (2003)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Ribbe, and C. Mao,

ence Foundation China (21373151) and Tianjin Medical

Y. He, Y. Tian, Y. Chen, Z. Deng, A.

University (TMU start-up fund).

 

 

 

 

 

 

 

 

 

Sequence symmetry as a tool for designing DNA nanostructures.

 

 

 

 

 

 

 

 

 

Angew. Chem., Int. Ed. 44, 6694 (2005)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24.

K. Lund, Y. Liu, S. Lindsay, and

H. Yan,

 

Self-assembling a molec-

REFERENCES

 

 

 

 

 

 

 

 

 

ular pegboard. J. Am. Chem. Soc. 127, 17606 (2005).

 

 

 

 

 

 

 

 

25.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. H. Park, C. Pistol, S. J. Ahn, J. H. Reif, A. R. Lebeck, C. Dwyer,

1.

G. M. Whitesides, Nanoscience, nanotechnology, and

chemistry.

 

and T. H. LaBean, Finite-size, fully addressable DNA tile lattices

 

Small 1, 172 (2005).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

formed by hierarchical assembly procedures. Angew. Chem., Int.

2.

H. S. Nalwa (ed.), Encyclopedia of Nanoscience

and Nano-

 

 

Ed. 45, 735 (2006).

 

technology, American Scientific Publishers, Los Angeles, CA

 

 

26.

Y. Liu, Y. Ke, and H. Yan, Self-assembly of symmetric finite-size

 

(2004/2011), Vols. 1–25.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA nanoarrays. J. Am. Chem. Soc. 127, 17140 (2005).

3.

H. S. Nalwa (ed.), Handbook of Nanostructured Materials and Nan-

 

27.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y. He, Y. Chen, H. Liu, A. E. Ribbe, and C. Mao, Self assembly of

 

otechnology, Academic Press, San Diego, CA (2000), Vols. 1–5.

 

 

hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc.

4.

N. C. Seeman, DNA in a material world. Nature 421, 427 (2003).

 

 

127, 12202 (2005).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N. C. Seeman, Nucleic acid junctions and lattices. J. Theor. Biol.

28.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y. He, Y. Tian, A. E. Ribbe, and C. Mao, Highly connected two-

 

99, 237 (1982).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc.

6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N. R. Kallenbach, R. I. Ma, and N. C. Seeman, An immobile

 

 

128, 15978 (2006).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nucleic acid junction constructed from oligonucleotides. Nature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29.

B. Wei, M. Dai and P. Yin, Complex shapes self-assembled from

 

305, 829 (1983).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

single-stranded DNA tiles. Nature 485, 623 (2012).

7.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T. J. Fu and N. C. Seeman, DNA double crossover molecules.

30.

B. Wei, M. Dai, C. Myhrvold, Y. Ke, R. Jungmann, and P. Yin,

 

Biochemistry 32, 3211 (1993).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design space for complex DNA structures. J. Am. Chem. Soc.

8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X. Li, X. Yang, J. Qi, and N. C. Seeman, Antiparallel DNA double

 

 

135, 18080 (2013).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

crossover molecules as components for nanoconstruction. J. Am.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31.

F. Zhang, Y. Liu, and H. Yan, Complex Archimedean tiling self-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chem. Soc. 118, 6131 (1996). Delivered by Publishing Technology to: Rice University

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

assembled from DNA nanostructures. J. Am. Chem. Soc. 135, 7458

9.

 

 

 

 

 

 

 

 

 

 

 

 

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

T. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif,

 

(2013).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright: American Scientific Publishers

 

and N. C. Seeman, The construction, analysis, ligation and self-

32.

P. W. K. Rothemund, Folding DNA to create nanoscale shapes and

 

assembly of DNA triple crossover complexes. J. Am. Chem. Soc.

 

 

patterns. Nature 440, 297 (2006).

 

122, 1848 (2000).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.

 

 

 

 

 

 

 

 

M. Endo, T. Sugita, Y. Katsuda, K. Hidaka, and H. Sugiyama,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z. Shen, H. Yan, T. Wang, and N. C. Seeman, Paranemic crossover

 

Programmed-assembly system using DNA Jigsaw pieces. Chem.

 

DNA: A generalized holliday structure with applications in nan-

 

 

 

Eur. J. 16, 5362 (2010).

 

otechnology. J. Am. Chem. Soc. 126, 1666 (2004).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34.

A. Rajendran, M. Endo, Y. Katsuda, K. Hidaka, and H. Sugiyama,

11.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N. C. Seeman, De Novo design of sequences for nucleic acid struc-

 

Programmed two-dimensional self-assembly of multiple DNA

 

ture engineering. J. Biomol. Str. Dyns. 8, 573 (1990).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

origami jigsaw pieces. ACS Nano 5, 665 (2011).

12.

J. J. Birac, W. B. Sherman, J. Kopatsh, P. E. Constantinou, and

 

35.

Z. Zhao, H. Yan, and Y. Liu, A route to scale up DNA origami

 

N. C. Seeman, GIDEON, A program for design in structural DNA

 

 

using DNA tiles as folding staples. Angew. Chem., Int. Ed. 49, 1414

 

nanotechnology. J. Mol. Graphics Modell. 25, 470 (2006)

 

13.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H. Yan,

 

(2010).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. Williams, K. Lund, C. Lin, P. Wonka, S. Lindsay, and

36.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tiamat: A three-dimensional editing tool for complex DNA struc-

Z. Zhao, Y. Liu, and H. Yan, Organizing DNA origami tiles

 

tures, The 14th International Meeting on DNA Computing, Prague,

 

into larger structures using preformed scaffold frames. Nano Lett.

 

Czech Republic (2008).

 

 

 

 

 

 

 

 

37.

11, 2997 (2011).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.

S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez,

Z. Li, M. Liu, L. Wang, J. Nangreave, H. Yan, and Y. Liu, Molecu-

 

G. M. Church, and W. M. Shih, Rapid prototyping of 3D DNA-

 

lar behavior of DNA origami in higher-order self-assembly. J. Am.

 

origami shapes with caDNAno. Nucleic Acids Res. 37, 5001 (2009)

38.

Chem. Soc. 132, 13545 (2010).

15.

C. E. Castro, F. Kilchherr, D. E. Kim, E. L. Shiao, T. Wauer,

M. Endo, T. Sugita, A. Rajendran, Y. Katsuda, T. Emura,

 

P. Wortmann, M. Bathe, and H. Dietz, A primer to scaffolded DNA

 

K. Hidaka, and H. Sugiyama, Two-dimensional DNA origami

 

origami. Nat. Methods 8, 221 (2011)

 

 

 

 

 

 

 

 

 

assemblies using a four-way connector. Chem. Commun. 47, 3213

16.

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Design and

39.

(2011).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

self-assembly of two-dimensional DNA crystals. Nature 394, 539

W. Liu, H. Zhong, R. Wang, and N. C. Seeman, Crystalline two-

 

(1998).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50, 264

17.

F. Liu,

R. Sha, and N. C. Seeman, Modifying the surface features of

 

(2011).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

two-dimensional DNA crystals. J. Am. Chem. Soc. 121, 917 (1999).

40.

Y. Ma, H. Zheng, C. Wang, Q. Yan, J. Chao, C. Fan, and S.-J.

18.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xiao, RCA strands as scaffold to create nanoscale shapes by a few

P. W. K. Rothemund, N. Papadakis, and E. Winfree, Algorithmic

 

 

 

 

self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, 2041

 

staple strands. J. Am. Chem. Soc. 135, 2959 (2013).

 

(2004).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41.

E. Pound, J. R. Ashton, H. C. A. Becerril, and A. T. Woolley, Poly-

19.

C. Mao, W. Sun, and N. C. Seeman, Designed two dimen-

 

merase Chain reaction based scaffold preparation for the production

 

sional DNA Holliday junction arrays visualized by atomic force

 

of thin, branched DNA origami nanostructures of arbitrary sizes.

 

microscopy. J. Am. Chem. Soc. 121, 5437 (1999).

 

 

 

 

 

 

 

 

 

Nano Lett. 9, 4302 (2009).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J. Biomed. Nanotechnol. 10, 2350–2370, 2014

DNA Nanotechnology and Its Applications in Biomedical Research

 

 

 

 

 

 

 

 

 

Sun et al.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42.

H. Zhang, J. Chao, D. Pan, H. Liu, Q. Huang, and C. Fan, Folding

63.

C. Zhang, S. H. Ko, M. Su, Y. Leng, A. E. Ribbe, W. Jiang, and

 

super-sized DNA origami with scaffold strands from long-range

 

Mao, Symmetry controls the face geometry of DNA polyhedra.

 

PCR. Chem. Commun. 48, 6405 (2012).

 

 

 

 

 

 

 

64.

J. Am. Chem. Soc. 131, 1413 (2009).

 

 

 

 

43.

B. R. Högberg, T. Liedl, and W. M. Shih, Folding DNA origami

S. Hamada and S. Murata, Substrate-assisted assembly of intercon-

 

from a double-stranded source of scaffold. J. Am. Chem. Soc.

 

nected single-duplex DNA nanostructures. Angew. Chem., Int. Ed.

 

131, 9154 (2009).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

65.

48, 6820 (2009).

 

 

 

 

 

 

 

 

44.

Y. Yang, D. Han, J. Nangreave, Y. Liu, and H. Yan, DNA origami

X. Li, C. Zhang, C. Hao, C. Tian, G. Wang, and C. Mao, DNA

 

with double-stranded DNA as a unified scaffold. ACS Nano 6, 8209

 

polyhedral with T-linkage. ACS Nano 6, 8209 (2012).

 

 

 

(2012).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66. Z. Liu, Y. Li, C. Tian, and C. Mao, A smart DNA tetrahedron that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

isothermally assembles or dissociates in response to the solution

45.

P. Wang, S. H. Ko, C. Tian, C. Hao, and C. Mao, RNA-DNA

 

 

pH value changes. Biomacromolecules 14, 1711 (2013).

 

 

 

hybrid origami: Folding of a long RNA single strand into complex

 

 

 

 

67. C. Zhang, C. Tian, X. Li, H. Qian, C. Hao, W. Jiang, and C. Mao,

 

nanostructures using short DNA helper strands. Chem. Commun.

 

 

Reversibly switching the surface porosity of a DNA tetrahedron.

 

49, 5462 (2013).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J. Am. Chem. Soc. 134, 11998 (2012).

 

 

 

 

46.

M. Endo, S. Yamamoto, K. Tatsumi, T. Emura, K. Hidaka, and

 

 

 

 

 

68. C. Zhang, M. Su, Y. He, Y. Leng, A. E. Ribbe, G. Wang, W. Jiang,

 

H. Sugiyama,

RNA-templated

 

DNA

origami

structures. Chem.

 

 

 

and C. Mao, Exterior modification of a DNA tetrahedron. Chem.

 

Commun. 49, 2879 (2013).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Commun. 46, 6792 (2010).

 

 

 

 

 

 

47.

J. Chen and N. C. Seeman, The synthesis from DNA of a molecule

 

 

 

 

 

 

 

69.

J. Zheng, J.

J. Birktoft, Y. Chen,

T.

Wang, R. Sha,

P. E.

 

with the connectivity of a cube. Nature 350, 631 (1991).

 

 

Constantinou,

S. L. Ginell,

C. Mao,

and

N. C. Seeman,

From

48.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y. Zhang and N. C. Seeman, The construction of a DNA truncated

 

 

molecular to

macroscopic

via the

rational design of a

self-

 

Octahedron. J. Am. Chem. Soc. 116, 1661 (1994).

 

 

 

 

 

 

 

 

 

 

 

 

 

assembled 3D DNA crystal. Nature 461, 74 (2009).

 

 

49.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W. M. Shih, J. D. Quispe, and G. F. Joyce, A 1.7-kilobase single-

 

 

 

70. R. Sha, J. J. Birktoft, N. Nguyen, A. R. Chandrasekaran, J. Zheng,

 

stranded DNA

that

folds into

 

a nanoscale octahedron. Nature

 

 

 

X. Zhao, C. Mao, and N. C. Seeman, Self-assembled DNA crystals:

 

427, 618

(2004).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The impact on resolution of 5 -phosphates and the DNA source.

50.

 

 

 

 

 

 

 

R. M. Berry, and A. J. Turberfield, The single-step

 

R. P. Goodman,

 

Nano Lett. 13, 793 (2013).

 

 

 

 

 

 

 

synthesis of a DNA tetrahedron. Chem. Commun. 40, 1372 (2004).

 

 

 

 

 

 

 

 

71. T. Wang, R. Sha, J. J. Birktoft, J. Zheng, C. Mao, and N. C.

51.

R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, R. M.

 

Seeman, A DNA crystal designed to contain two molecules per

 

Berry, C. F. Schmidt, and A. J. Turberfield, Rapid chiral assem-

 

asymmetric unit. J. Am. Chem. Soc. 132, 15471 (2010).

 

 

 

bly of rigid DNA building blocks for molecular nanofabrication.

72.

D. Bhatia, S. Mehtab, R. Krishnan, S. S. Indi, A. Basu, and

52.

Science 310, 1661 (2005).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y. Krishnan, Icosahedral DNA nanocapsules by modular assembly.

Z. Li, B. Wei, J.

Nangreave, C. Lin, Y. Liu, Y. Mi, and H. Yao,

 

Angew. Chem., Int. Ed. 48, 4134 (2009).

 

 

 

 

A replicable tetrahedral nanostructure self-assembled from a single

73.

Y. Li, Y. D. Tseng, S. Y. Kwon, L. D’Espaux, J. S. Bunch, P. L.

 

DNA strand. J. Am. Chem. Soc. 131, 13093 (2009).

 

 

 

 

 

 

Mceuen, and D. Luo, Controlled assembly of dendrimer-like DNA.

53.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delivered by Publishing Technology to: Rice University

 

 

 

 

 

 

T. Kato, R. P. Goodman, C. M. Erben, A. J. Turberfield, and

 

Nat. Mater. 3, 38 (2004).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright: American Scientific Publishers

 

 

 

 

 

 

 

K. Namba, High-resolution structural analysis of a DNA nano-

74.

Y. Ke, L. L. Ong, W. M. Shih, and P. Yin, Three-dimensional struc-

 

structure by cryoEM. Nano Lett. 9, 2747 (2009).

 

 

 

 

 

 

tures self-assembled from DNA bricks. Science 338, 1177 (2012).

54.

R. P. Goodman, M. Heilemann, S. Doose, C. M. Erben, A. N.

75.

F. A. Aldaye and H. F. Sleiman, Modular access tostructurally

 

Kapanidis, and A. J. Turberfield, Reconfigurable, braced, three-

 

switchable 3D discrete DNA assemblies. J. Am. Chem. Soc.

 

dimensional DNA nanostructures. Nat. Nanotechnol. 3, 93 (2008).

76.

129, 13376 (2007).

 

 

 

 

 

 

 

 

55.

H. Pei, L. Liang, G. Yao, J. Li, Q. Huang, and C. Fan, Recon-

S. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, and W. M.

 

figurable three-dimensional DNA nanostructures for the construc-

 

Shih, Self-assembly of DNA into nanoscale three-dimensional

 

tion of intracellular logic sensors. Angew. Chem., Int. Ed. 51, 9020

 

shapes. Nature 459, 414 (2009).

 

 

 

 

 

77. H. Dietz, S. M. Douglas, and W. M. Shih, Folding DNA into

 

(2012).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

twisted and curved nanoscale shapes. Science 325, 725 (2009).

56.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Han, J. Huang, Z. Zhu, Q. Yuan, M. You, Y. Chen, and W. Tan,

 

78. Y. Ke, N. V. Voigt, K. V. Gothelf, and W. M. Shih, Multilayer DNA

 

Molecular engineering of photoresponsive three-dimensional DNA

 

 

origami packed on hexagonal and hybrid lattices. J. Am. Chem.

 

nanostructures. Chem. Commun. 47, 4670 (2011).

 

 

 

 

 

 

 

 

 

 

 

 

 

Soc. 134, 1770 (2011).

 

 

 

 

 

 

57.

N.

Mitchell,

R.

Schlapak,

 

 

M.

Kastner,

 

D.

 

Armitage,

 

 

 

 

 

 

 

 

 

 

 

79. Y. Ke, S. M. Douglas, M. Liu, J. Sharma, A. Cheng, A. Leung,

 

W.

Chrzanowski, J.

Riener,

P. Hinterdorfer,

 

A.

Ebner, and

 

 

 

Y. Liu, W. M. Shih, and H. Yan, Multilayer DNA origami packed

 

S. Howorka, A DNA nanostructure for the functional assembly of

 

 

 

on a square lattice. J. Am. Chem. Soc. 131, 15903 (2009).

 

 

 

chemical groups with tunable stoichiometry and defined nanoscale

 

 

 

 

80. T. Liedl, B. Hogberg, J. Tytell, D. E. Ingber, and W. M. Shih,

 

geometry. Angew. Chem. Int. Ed. 48, 525 (2009).

 

 

 

 

 

 

 

 

 

 

 

 

Self-assembly of three-dimensional prestressed tensegrity structures

58.

C. M. Erben,

R. P. Goodman, and

A. J. Turberfield, A self-

 

 

from DNA. Nat. Nanotechnol 5, 520 (2010).

 

 

 

assembled DNA bipyramid. J. Am. Chem. Soc. 129, 6992 (2007).

 

 

 

 

81. E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani,

59.

Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, and C. Mao,

 

W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira,

 

Hierarchical self-assembly of DNA into symmetric supramolecular

 

 

 

J. S. Pedersen, V. Birkedal,

F. Besenbacher, K. V. Gothelf, and

 

polyhedra. Nature 452, 198 (2008).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J. Kjems, Self-assembly of a nanoscale DNA box with a control-

60.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Zhang, M. Su, Y. He, X.

Zhao,

P. Fang, A. E. Ribbe, W. Jiang,

 

lable lid. Nature 459, 73 (2009).

 

 

 

 

 

and C. Mao, Conformational flexibility facilitates self-assembly

 

 

 

 

 

 

82.

 

 

 

 

 

 

R. M. Zadegan, M. D. E.

Jepsen, K. E. Thomsen, A. H. Okholm,

 

of complex DNA nanostructures. Proc. Natl. Acad. Sci. USA

 

D. H. Schaffert, E. S. Andersen, V. Birkedal, and J. Kjems, Con-

61.

105, 10665 (2008).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

struction of a 4 zeptoliters switchable 3D DNA box origami. ACS

Y. He, M. Su, P. Fang, C. Zhang, A. E. Ribbe, W. Jiang, and

 

Nano 6, 10050 (2012).

 

 

 

 

 

 

 

C. Mao, On the chirality of self-assembled DNA octahedra. Angew.

83.

A. Kuzuya and M. Komiyama, Design and construction of box-

 

Chem., Int. Ed. 49, 748 (2010).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shaped 3D-DNA origami. Chem. Commun. 45, 4182 (2009).

 

 

62.

C. Zhang, W. Wu, X. Li, C. Tian, H. Qian, G. Wang, W. Jiang,

84.

M. Endo, K. Hidaka, and H. Sugiyama, Direct observation of an

 

and C. Mao, Controlling the chirality of DNA nanocages. Angew.

 

opening event of a DNA cuboid constructed via a prism structure.

 

Chem., Int. Ed. 51, 7999 (2012).

 

 

 

 

 

 

 

 

 

 

 

Org. Biomol. Chem. 9, 2075 (2011).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2366

J. Biomed. Nanotechnol. 10, 2350–2370, 2014

Sun et al.

 

 

 

 

 

 

 

 

 

 

DNA Nanotechnology and Its Applications in Biomedical Research

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85.

Y. Ke, J. Sharma, M. Liu, K. Jahn, Y. Liu, and H. Yan, Scaffolded

106.

O. I. Wilner, A. Henning, B. Shlyahovsky, and I. Willner, Cova-

 

DNA origami of a DNA tetrahedron molecular container. Nano

 

lently linked DNA nanotubes. Nano Lett. 10, 1458 (2010).

 

Lett. 9, 2445 (2009).

 

 

 

 

 

 

 

 

 

 

107.

J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, and H. Yan,

86.

D. Liu, S. H.

Park,

J. H. Reif, and T. H. LaBean, DNA nanotubes

 

Control of self-assembly of DNA tubules through integration of

 

self-assembled from triple-crossover tiles as templates for conduc-

 

gold nanoparticles. Science 323, 112 (2009).

87.

tive nanowires. Proc. Nat. Acad. Sci. USA 101, 717 (2004).

108.

C. Mao, W. Sun, Z. Shen, and N. C. Seeman, A DNA nanomechan-

 

 

 

 

 

 

 

 

 

J. C. Mitchell, R. Harris, J. Maio, J. Bath, and A.

J. Turberfield,

 

ical device based on the B-Z transition. Nature 397, 144 (1999).

 

Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc.

109.

 

 

and

 

B. Yurke, A. J. Turberfield, A. P. Mills Jr., F. C. Simmel,

88.

126, 16342 (2004).

 

 

 

 

 

 

 

 

 

 

 

 

J. L. Neumann, A DNA-fuelled molecular machine made of DNA.

P. W. K.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar,

 

Nature 406, 605 (2000).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. K. Fygenson, and E. Winfree, Design and characterization of

110.

W. U. Dittmer and F. C. Simmel, Transcriptional control of DNA-

 

programmable DNA nanotubes.

J. Am. Chem. Soc. 126, 16344

 

 

based nanomachines. Nano Lett. 4, 689 (2004).

89.

(2004).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

111.

S. Beyer, W. U. Dittmer, and F. C. Simmel, Design variations for

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P. O’Neill, P. W. K. Rothemund, A. Kumar, and D. K. Fygenson,

 

an aptamer-based DNA nanodevice. J. Biomed. Nanotechnol. 1, 96

90.

Sturdier DNA nanotubes via ligation. Nano Lett. 6, 1379 (2006).

 

(2005).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. M. Mohammed and R. Schulman, Directing self-assembly of

112.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H. Yan, H.; X. Zhang, Z. Shen, and N. C. Seeman, A robust DNA

 

DNA nanotubes using programmable seeds. Nano Lett. 13, 4006

 

 

mechanical device controlled by hybridization topology. Nature

 

(2013).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

415, 62 (2002).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M. Endo, N. C. Seeman, and T. Majima, DNA tube structures con-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

113.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Ding and N. C. Seeman, Operation of a DNA robot arm inserted

 

trolled by a four-way-branched DNA connector. Angew. Chem., Int.

 

 

into a 2D DNA crystalline substrate. Science 31, 1583 (2006).

 

Ed. 44, 6074 (2005).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

114.

S. Liao and N. C. Seeman, Translation of DNA signals into polymer

92.

H. Liu, Y. Chen, Y. He, A. E. Ribbe, and C. Mao, Approaching

 

assembly instructions. Science 306, 2072 (2004).

 

the limit: Can one DNA oligonucleotide assemble into large nano-

 

 

115.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H. Gu, J. Chao, S. J. Xiao, and N. C. Seeman, Dynamic patterning

 

structures? Angew. Chem. Int. Ed. 45, 1942 (2006).

 

 

programmed by DNA tiles captured on a DNA origami substrate.

93.

F. Mathieu, S. Liao, J. Kopatsch, T. Wang, C. Mao, and N. C.

 

 

Nat. Nanotechnol. 4, 245 (2009).

 

Seeman, Six-helix bundles designed from DNA. Nano Lett. 5, 661

 

 

116.

W. Shen, M. F. Bruist,

S. D. Goodman, and N. C. Seeman,

 

(2005).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A protein-driven DNA

device that measures the excess bind-

94.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T. Wang, D. Schifells, S. M. Cuesta, D. K. Fygenson, and N. C.

 

 

ing energy of proteins that distort DNA. Angew. Chem., Int. Ed.

 

Seeman, Design and characterization of 1D nanotubes and 2D peri-

 

 

 

43, 4906 (2004).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

odic arrays self-assembled from DNA multi-helix bundles. J. Am.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

117.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X. Han, Z. Zhou, F. Yang, and Z. Deng, Catch and release: DNA

 

Chem. Soc. 134, 1606 (2012).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tweezers that can catch, hold, and release an object under control.

95.

R. Wang, W. Liu, and N. C. Seeman, Prototyping nanorod con-

 

 

J. Am. Chem. Soc. 130, 14414 (2008).

 

 

 

 

 

 

 

 

 

 

 

Delivered by Publishing Technology to: Rice University

 

trol: A DNA double helix sheathed within a DNA six-helix bundle.

118. W. B. Sherman and N. C. Seeman, A precisely controlled DNA

 

Chem. Biol. 16, 862 (2009).

 

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

biped walking device. Nano Lett. 4, 1203 (2004).

96.

 

 

 

 

 

 

 

 

 

 

 

Copyright: American Scientific Publishers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Kuzuya, R. Wang, R. Sha, and N. C. Seeman, Six-helix and

119.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P. Yin, H. Yan, X. G. Daniell, A. J. Turberfield, and J. H. Reif,

 

eight-helix DNA nanotubes assembled from half-tubes. Nano Lett.

 

 

A unidirectional DNA walker that moves autonomously along a

 

7, 1757 (2007).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

track. Angew. Chem., Int. Ed. 43, 4906 (2004).

97.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y. Ke, Y. Liu, J. Zhang, and H. Yan, A study of DNA tube forma-

120.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y. Tian, Y. He, Y. Chen, P. Yin, and C. Mao, A DNAzyme

 

tion mechanisms using 4-, 8-, and 12-helix DNA nanostructures.

 

 

that walks processively and autonomously along a one-dimensional

 

J. Am. Chem. Soc. 128, 4414 (2006).

 

 

 

track. Angew. Chem., Int. Ed. 44, 4355 (2005).

98.

P. Yin, R. F. Hariadi, S. Sahu, H. M. T. Choi, S. H. Park, T. H.

 

121.

Z. G. Wang, J. Elbaz, and I. Willner, DNA machines: Bipedal

 

LaBean, and J. H. Reif, Programming DNA tube circumferences.

 

 

walker and stepper. Nano Lett. 11, 304 (2011).

 

Science 321, 824 (2008).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

122.

T. Omabegho, R. Sha, and N. C. Seeman, A bipedal DNA Brownian

99.

W. B. Sherman and N. C. Seeman, Design of minimally strained

 

motor with coordinated legs. Science 324, 67 (2009).

 

nucleic acid nanotubes. Biophys. J. 90, 4546 (2006).

 

 

123.

Y. He and D. R. Liu, Autonomous multistep organic synthesis

100.

H. Qian, C. Tian, J. Yu, F. Guo, M.-S. Zheng, W. Jiang, Q.-F.

 

in a single isothermal solution mediated by a DNA walker. Nat.

 

Dong, and C. Mao, Self-assembly of DNA nanotubes with defined

 

 

 

Nanotechnol. 5, 778 (2010).

 

diameters and lengths. Small 10, 855 (2014).

 

 

124.

K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck,

101.

S. M. Douglas, J. J. Chou, and W. M. Shih, DNA-nanotube-induced

 

J. Nangreave, S. Taylor, R. J. Pei, M. N. Stojanovic, N. G. Walter,

 

alignment of membrane proteins for NMR structure determination.

 

 

 

E. Winfree, and H. Yan, Molecular robots guided by prescriptive

 

Proc. Natl. Acad. Sci. USA 104, 6644 (2007).

 

102.

F. A. Aldaye, P. K. Lo, P. Karam, C. K. McLaughlin, G. Cosa,

 

landscapes.

Nature 465, 206

(2010).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

125.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and H. F. Sleiman, Modular construction of DNA nanotubes of

S. F. Wickham, M. Endo,

Y.

Katsuda, K. Hidaka, J. Bath,

 

tunable geometry and singleor double-stranded character. Nat.

 

H. Sugiyama, and A. J. Turberfield, Direct observation of stepwise

 

Nanotechnol. 4, 349 (2009).

 

 

 

 

 

 

 

 

 

 

 

movement of a synthetic molecular transporter. Nat. Nanotechnol.

103.

P. K. Lo, F. Altvater, and H. F. Sleiman, Templated synthesis of

126.

6, 166 (2011).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA nanotubes with controlled, predetermined lengths. J. Am.

S. F. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka,

 

Chem. Soc. 132, 10212 (2010).

 

 

 

 

 

 

 

 

 

 

 

H. Sugiyama, and A. J. Turberfield, A DNA-based molecular motor

104.

G. D. Hamblin, K. M. Carneiro, J. F. Fakhoury, K. E. Bujold, and

 

that can navigate a network of tracks. Nat. Nanotechnol. 7, 169

 

H. F. Sleiman, Rolling circle amplification-templated DNA nano-

127.

(2012).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tubes show increased stability and cell penetration ability. J. Am.

H. Gu, J. Chao, S. J. Xiao, and N. C. Seeman, A proximity-based

 

Chem. Soc. 134, 2888 (2012).

 

 

 

 

 

 

 

 

 

 

 

programmable DNA nanoscale assembly line. Nature 465, 202

105.

G. D. Hamlin, A. A. Hariri, K. M. M. Carneiro, K. L. Lao, G. Cosa,

 

(2010).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and H. F. Sleiman, Simple design for DNA nanotubes from a min-

128.

H. Li, S. H. Park, J. H. Reif, T. H. LaBean, and H. Yan, DNA-

 

imal set of unmodified strands: Rapid, room-temperature assembly

 

templated self-assembly of protein and nanoparticle linear arrays.

 

and readily tunable structure. ACS Nano 7, 3022 (2013).

 

J. Am. Chem. Soc. 126, 418 (2004).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J. Biomed. Nanotechnol. 10, 2350–2370, 2014

2367

DNA Nanotechnology and Its Applications in Biomedical Research

 

 

 

 

 

 

 

 

 

 

 

 

Sun et al.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

129.

S. H. Park, P. Yin, Y. Liu, J. H. Reif, T. H. LaBean, and H. Yan,

 

factor encapsulation inside a DNA cage. Angew. Chem., Int. Ed.

 

Programmable DNA self-assemblies for nanoscale organization of

 

52, 2284 (2013).

 

 

 

 

 

 

 

 

 

 

ligands and proteins. Nano Lett. 5, 729 (2005).

150.

J. D. Flory, S.

Shinde, S. Lin, Y. Liu, H. Yan, G. Ghirlanda, and

130.

 

 

Accommodation of a

 

P. Fromme, PNA-peptide assembly in a 3D DNA nanocage at room

A. Kuzuya, K. Numajiri, and M. Komiyama,

 

 

single protein guest in nanometer-scale wells embedded in a DNA

 

temperature. J. Am. Chem. Soc. 135, 6985 (2013).

 

 

 

131.

nanotape. Angew. Chem., Int. Ed. 47, 3400 (2008).

151.

G. Bellot, M. A. McClintock, J. J. Chou, and W. M. Shih, DNA

A. Kuzuya,

M. Kimura, K. Numajiri, N. Hoshi, T. Ohnishi,

 

nanotubes for NMR structure determination of membrane proteins.

 

F. Okada, and M. Komiyama, Precisely programmed and robust 2D

 

Nat. Protoc. 8, 755 (2013).

 

 

 

 

 

 

 

 

 

streptavidin nanoarrays by using periodical nanometer-scale wells

152. N. D. Derr, B. S. Goodman, R. Jungmann, A. E. Leschziner, W. M.

 

embedded in

DNA origami assembly. ChemBioChem 10, 1811

 

Shih, and S. L. Reck-Peterson, Tug-of-war in motor protein ensem-

 

(2009).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bles revealed with a programmable DNA origami scaffold. Science

132.

K. Numajiri, M. Kimura, A. Kuzuya, and M. Komiyama, Stepwise

 

 

338, 662 (2012).

 

 

 

 

 

 

 

 

 

 

and reversible nanopatterning of proteins on a DNA origami scaf-

 

 

 

 

 

 

 

 

 

 

 

153. R. Subramani, S. Juul, A. Rotaru, F. F. Andersen, K. V. Gothelf,

 

fold. Chem. Commun. 46, 5127 (2010).

 

 

W. Mamdouh, F. Bensenbacher, M. Dong, and B. Knudsen, A novel

133.

Y. He, Y. Tian, A. E. Ribbe, and C. Mao, Antibody nanoarrays with

 

 

secondary DNA binding site in human topoisomerase I unraveled

 

a pitch of 20 nanometers. J. Am. Chem. Soc. 128, 12664 (2006).

 

 

 

by using a 2D DNA origami platform. ACS Nano 10, 5969 (2010).

134.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y. Liu, C. Lin, H. Li, and H. Yan, Aptamer-directed self-assembly

154.

M. Endo, Y. Katsuda, K. Hidaka, and H. Sugiyama, Regulation

 

of protein arrays on a DNA nanostructure. Angew. Chem., Int. Ed.

 

 

of

DNA methylation using different

tensions

of

double strands

 

44, 4333 (2005).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

constructed in a defined DNA nanostructure. J. Am. Chem. Soc.

135.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Lin, E. Katilius, Y. Liu, J. Zhang, and H. Yan, Self-assembled

 

 

132, 1592 (2010).

 

 

 

 

 

 

 

 

 

 

signaling aptamer DNA arrays for protein detection. Angew. Chem.,

 

 

 

 

 

 

 

 

 

 

 

155.

M. Endo, Y. Katsuda, K. Hidaka, and H. Sugiyama, A versatile

 

Int. Ed. 45, 5296 (2006).

 

 

 

 

DNA nanochip for direct analysis of DNA base-excision repair.

136.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R. Chhabra,

J. Sharma, Y. Ke, Y. Liu, S. Rinker, S. Lindsay,

 

 

Angew. Chem., Int. Ed. 49, 9412 (2010).

 

 

 

 

 

 

and H. Yan,

Spatially addressable multiprotein nanoarrays tem-

 

 

 

 

 

 

 

156. A. Rajendran, M. Endo, K. Hidaka, P. L. T. Tran, J.-L. Mergny,

 

plated by aptamer-tagged DNA nanoarchitectures. J. Am. Chem.

 

 

R. J. Gorelick, and H. Sugiyama, HIV-1 nucleocapsid proteins as

 

Soc. 129, 10304 (2007).

 

137.

S. Rinker, Y. Ke, Y. Liu, R. Chhabra, and H. Yan, Self-assembled

 

molecular chaperones for tetramolecular antiparallel G-quadruplex

 

DNA nanostructures for distance-dependent multivalent ligand-

157.

formation. J. Am. Chem. Soc. 135, 18575 (2013).

 

 

 

 

protein binding. Nat. Nanotechnol. 3, 418 (2008).

Y. Suzuki, M. Endo, Y. Katsuda, K. Ou,

K.

Hidaka,

and

138.

J. Malo, J. C. Mitchell, C. Venien-Bryan, J. R. Harris, H. Wille,

 

H. Sugiyama, DNA origami based visualization system for study-

 

D. J. Sherratt, and A. J. Turberfield, Engineering a 2D protein-DNA

 

ing site-specific recombination events, J. Am. Chem. Soc. 136, 211

 

crystal. Angew. Chem., Int. Ed. 44, 3057 (2005).

 

(2014).

 

 

 

 

 

 

 

 

 

 

 

 

139.

E. Nakata, F. F. Liew, C. Uwatoko, S. Kiyonaka, Y. Mori,

158. M. Endo, K. Tatsumi, K. Terushima, Y. Katsuda, K. Hidaka,

 

 

 

 

 

 

 

 

 

 

 

 

Delivered by Publishing Technology to: Rice University

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

 

 

 

 

 

 

 

 

 

Y. Katsuda, M. Endo, H. Sugiyama, and T. Morii, Zinc-finger pro-

 

Y. Harada, and H. Sugiyama, Direct visualization of the movement

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright: American Scienti ic Publishers

 

 

 

 

 

 

 

 

 

teins for site-specific protein positioning on DNA origami struc-

 

of a single T7 RNA polymerase and transcription on a DNA nano-

140.

tures. Angew. Chem., Int. Ed. 51, 2421 (2012).

 

structure. Angew. Chem., Int. Ed. 51, 8778 (2012).

 

 

 

B. A.

R. Williams, K. Lund, Y. Liu, H.

 

 

 

 

 

 

 

 

 

 

 

159.

 

 

 

 

 

 

 

Yan, and J. C. Chaput, Self-

H. Gu, W. Yang, and N. C. Seeman, DNA scissors device used

 

assembled peptide nanoarrays: An approach to studying protein-

 

to measure MutS binding to DNA mis-pairs. J. Am. Chem. Soc.

141.

protein interactions. Angew. Chem., Int. Ed. 46, 3051 (2007).

 

132, 4352 (2010).

 

 

 

 

 

 

 

 

 

N. Stephanopoulos, M. Liu, G. J. Tong, Z. Li, Y. Liu, H. Yan, and

160.

C. Liu, E. Kim, B. Demple, and N. C. Seeman, A DNA-based

 

M. B. Francis, Immobilization and one-dimensional arrangement of

 

nanomechanical device used to characterize the distortion of DNA

 

virus capsids with nanoscale precision using DNA origami. Nano

 

by apo-SoxR protein. Biochemistry 51, 937 (2012).

 

 

 

 

Lett. 10, 2714 (2010).

161. O. I. Wilner, Y. Weizmann, R. Gill, O. Lioubashevski, R. Freeman,

142.

W. Shen, H. Zhong, D. Neff, and M. L. Norton, NTA directed pro-

 

and I. Willner, Enzyme cascades activated on topologically pro-

 

tein nanopatterning on DNA origami nanoconstructs. J. Am. Chem.

 

 

 

grammed DNA scaffolds. Nat. Nanotechnol. 4, 249 (2009).

 

 

 

Soc. 131, 6660 (2009).

 

 

 

 

162. O. I. Wilner, S. Shimron, Y. Weizmann, Z. G. Wang, and I. Willner,

143.

R. P. Goodman, C. M. Erben, J. Malo, W. M. Ho, M. L. McKee,

 

Self-assembly of enzymes on DNA scaffolds: En route to biocat-

 

A. N. Kapanidis, and A. J. Turberfield, A facile method for

 

 

 

alytic cascades and the synthesis of metallic nanowires. Nano Lett.

 

reversibly linking a recombinant protein to DNA. ChemBioChem

 

 

 

9, 2040 (2009).

 

 

 

 

 

 

 

 

 

 

 

10, 1551 (2009).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

163. J. Fu, M. Liu, Y. Liu, N. W. Woodbury, and H. Yan, Interenzyme

144.

W. Huang, J. Chao, Q. Yan, and S. J. Xiao, Binding His-tagged

 

substrate diffusion for an enzyme cascade organized on spatially

 

proteins to DNA stripes assembled in 2D DNA scaffold. Chin. J.

 

 

 

addressable DNA

nanostructures. J. Am. Chem. Soc. 134,

5516

 

Chem. 28, 1795 (2010).

 

 

 

(2012).

 

 

 

 

 

 

 

 

 

 

 

 

145.

B. Sacca, R. Meyer, M. Erkelenz, K. Kiko, A. Arndt, H. Schroeder,

 

 

 

 

 

 

 

 

 

 

 

 

 

164.

K.

Numajiri, T.

Yamazaki, M.

Kimura,

A.

Kuzuya,

and

 

K. S. Rabe, and C. M. Niemeyer, Orthogonal protein decoration of

 

 

M. Komiyama, Discrete and active enzyme nanoarrays on DNA

 

DNA origami. Angew. Chem., Int. Ed. 49, 9378 (2010).

 

 

 

origami scaffolds purified by affinity tag separation. J. Am. Chem.

146.

C. M. Erben, R. P. Goodman, and A. J. Turberfield, single-molecule

 

 

Soc. 132, 9937 (2010).

 

 

 

 

 

 

 

 

 

protein encapsulation in a rigid DNA cage. Angew. Chem., Int. Ed.

 

 

 

 

 

 

 

 

 

 

165.

M. Erkelenz, C. H. Kuo, and C. M. Niemeyer, DNA-mediated

 

45, 7414 (2006).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

assembly of cytochrome P450 BM3 subdomains. J. Am. Chem. Soc.

147.

N. Y. Wong, C. Zhang, L. H. Tan, and Y. Lu, Site-specific attach-

 

 

ment of proteins onto a 3D DNA tetrahedron through backbone-

166.

133, 16111 (2011).

 

 

 

 

 

 

 

 

 

 

modified phosphorothioate DNA. Small 7, 1427 (2011).

C. Zhou, Z. Yang, and D. Liu, Reversible regulation of protein

148.

C. Zhang, C. Tian, F. Guo, Z. Liu, W. Jiang, and C. Mao, DNA-

 

binding affinity by a DNA machine. J. Am. Chem. Soc. 134, 1416

 

directed three-dimensional protein organization. Angew. Chem., Int.

167.

(2012).

 

 

 

 

 

 

 

 

 

 

 

 

149.

Ed. 51, 3382 (2012).

 

 

 

 

 

 

M. Liu, J. Fu, C. Hejesen, Y. Yang, N. W. Woodury, K. Gothelf,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y. Liu, and H. Yan, A DNA tweezer-actuated enzyme nanoreactor.

R. Crawford,

C. M.

Erben, J. Periz, L. M. Hall, T. Brown, A. J.

 

 

Turberfield, and A. N. Kapanidis, Non-covalent single transcription

 

Nat. Commun. 4, 2127 (2013).

 

 

 

 

 

 

 

 

2368

J. Biomed. Nanotechnol. 10, 2350–2370, 2014

Sun et al.

 

 

DNA Nanotechnology and Its Applications in Biomedical Research

 

 

 

 

168.

Y. Li, Y. T. H. Cu, and D. Luo, Multiplexed detection of pathogen

189.

J. Li, H. Pei, B. Zhu, L. Liang, M. Wei, Y. He, N. Chen, D. Li,

 

DNA with DNA-based fluorescence nanobarcodes, Nat. Biotechnol.

 

Q. Huang, and C. Fan, Self-assembled multivalent DNA nano-

 

23, 885 (2005).

 

 

structures for noninvasive intracellular delivery of immunostimula-

169.

D. Han, J. Hong, H. C. Kim, J. H. Sung, and J. B. Lee, Multi-

 

tory CpG oligonucleotides. ACS Nano 5, 8783 (2011).

 

plexing enhancement for the detection of multiple pathogen DNA.

190. H. Lee, A. K. R. Lytton-Jean, Y. Chen, K. T. Love, A. I. Park, E. D.

170.

J. Nanosci. Nanotechnol. 13, 7295 (2013).

 

Karagiannis, A. Sehgal, W. Querbes, C. S. Zurenko, M. Jayaraman,

C. Lin, Y. Liu, and H. Yan, Self-assembled combinatorial encoding

 

C. G. Peng, K. Charisse, A. Borodovsky, M. Manoharan, J. S.

171.

nanoarrays for multiplexed biosensing, Nano Lett. 7, 507 (2007).

 

Donahoe,

J. Truelove,

M. Nahrendorf, R. Langer, and D. G.

C. Lin, R. Jungmann, A. M. Leifer, C. Li, D. levner, G. M. Church,

 

Anderson,

Molecularly

self-assembled nucleic acid nanoparticles

 

and P. Yin, Submicrometre geometrically encoded fluorescent bar-

 

 

 

for targeted in vivo SiRNA delivery. Nat. Nanotechnol. 7, 389

 

codes self-assembled from DNA. Nat. Chem. 4, 832 (2012).

 

 

 

(2012).

 

 

 

172.

C. Steinhauer,

R. Jungmann,

T. L. Sobey, F. C. Simmel, and

 

 

 

 

191. X. Liu, Y. Xu, T. Yu, C. Clifford, Y. Liu, H. Yan, and Y. Chang,

 

P. Tinnefeld,

DNA origami

as a nanoscopic ruler for super-

 

 

A DNA nanostructure platform for directed assembly of synthetic

 

resolution microscopy. Angew. Chem., Int. Ed. 48, 8870 (2009).

 

 

 

vaccines. Nano Lett. 12, 4254 (2012).

173.

Y. Ke, S. Lindsay, Y. Chang, Y. Liu, and H. Yan, Self-assembled

 

192. K. Mohri, M. Nishikawa, N. Takahashi, T. Shiomi, N. Matsuoka,

 

water-soluble nucleic acid probe tiles for label-free RNA hybridiza-

 

 

K. Ogawa, M. Endo, K. Hidaka, H. Sugiyama, Y. Takahashi, and

 

tion assays. Science 319, 180 (2008).

 

 

 

Y. Takakura, Design and development of nanosized DNA assem-

174.

Z. Zhang, Y. Wang, C. Fan, C. Li, Y. Li, L. Qian, Y. Fu,

 

 

blies in polypod-like structures as efficient vehicles for immunos-

 

Y. Shi, J. Hu, and L. He, Asymmetric DNA origami for spatially

 

 

 

timulatory CpG motifs to immune cells. ACS Nano 6, 5931 (2012).

 

addressable and index-free solution-phase DNA chips. Adv. Mater.

 

 

193.

M. Chang, C. S. Yang, and D.-M. Huang, Aptamer-conjugated

 

22, 2672 (2010).

 

 

 

 

DNA icosahedral nanoparticles as a carrier of doxorubicin for can-

175.

H. K. K. Subramanian, B. Chakraborty, R. Sha, and N. C. Seeman,

 

 

cer therapy. ACS Nano 5, 6156 (2011).

 

The label-free unambiguous detection and symbolic display of sin-

 

 

194.

D. Bhatia, S. Surana,

S. Chakraborty, S. P. Koushika, and

 

gle nucleotide polymorphisms on DNA origami. Nano Lett. 11, 910

 

 

Y. Krishnan, A synthetic icosahedral DNA-based host-cargo com-

 

(2011).

 

 

 

 

 

 

 

plex for functional in vivo imaging. Nat. Commun. 2, 339 (2011).

176.

A. Kuzuya, Y. Sakai, T. Yamazaki, Y. Xu, and M. Kumiyama,

 

195.

A. Banerjee, D. Bhatia, A. Saminathan, S. Chakraborty, S. Kar,

 

Nanomechanical DNA origami ‘single-molecule-beacons’ directly

 

imaged by atomic force microscopy. Nat. Commun. 2, 449 (2011).

 

and Y. Krishnan, Controlled release of encapsulated cargo from a

177.

H. Pei, N. Lu, Y. Wen, S. Song, Y. Liu, H. Yan, and C. Fan, A DNA

 

DNA icosahedron using a chemical rigger. Angew. Chem., Int. Ed.

 

nanostructure-based biomolecular probe carrier platform for elec-

196.

52, 6854 (2013).

 

 

 

trochemical sensing. Adv. Mater. 22, 4754 (2010).

Q. Mei,

X. Wei, F. Su, Y. Liu, C. Youngbull, R. Johnson,

178.

Y. Wen, H. Pei, Y. Wan, Y. Su, Q. Huang, S. Song, and C. Fan,

 

S. Lindsay, H. Yan, and D. Meldrum, Stability of DNA Origami

 

DNA nanostructure-decorated surfaces for enhanced aptamer-target

 

Nanoarrays in Cell Lysate. Nano Lett. 11, 1477 (2011).

 

 

 

Delivered by Publishing Technology to: Rice University

 

 

 

 

IP: 206.214.8.80 On: Fri, 15 Jan 2016 06:47:27

 

 

 

binding and electrochemical cocaine sensors. Anal. Chem. 83, 7418

197.

Q. Mei, R. H. Johnson, X. Wei, F. Su, Y. Liu, L. Kelbauskas,

 

(2011).

 

 

 

S. Lindsay, D. R. Meldrum, and H. Yan, On-chip isotachophoresis

179.

 

 

Copyright: American Scientific Publishers

 

 

H. Pei, Y. Wan, J. Li, H. Hu, Y. Su, Q. Huang, and C. Fan, Regener-

 

separation of functional DNA origami capture nanoarrays from cell

 

able electrochemical immunological sensing at DNA nanostructure-

 

lysate. Nano Res. 6, 712 (2013).

 

180.

decorated gold surfaces. Chem. Commun. 47, 6254 (2011).

198.

V. J. Schuller, S. Heidegger, N. Sandholzer, P. C. Nickels, N. A.

Y. Wen, H. Pei, Y. Shen, J. Xi, M. Lin, N. Lu, X. Shen, J. Li, and

 

Suhartha, S. Endres, C. Bourquin, and T. Liedl, Cellular immunos-

 

C. Fan, DNA nanostructure-based interfacial engineering for PCR-

 

timulation by CpG sequence-coated DNA origami structures. ACS

 

free ultrasensitive electrochemical analysis of microRNA. Sci. Rep.

 

Nano 5, 9696 (2011).

 

 

 

2, 867 (2012).

 

 

199. Y. X. Zhao, A. Shaw, X. Zeng, E. Benson, A. M. Nystrom, and

181.

C. Lin, Y. Ke, Y. Liu, M. Mertig, J. Gu, and H. Yan, Functional

 

B. Hogberg, DNA origami delivery system for cancer therapy with

 

DNA nanotube arrays: Bottom-up meets top-down. Angew. Chem.,

 

 

 

tunable release properties. ACS Nano 6, 8684 (2012).

 

Int. Ed. 46, 6089 (2007).

 

 

 

 

200.

Q. Jiang, C. Song, J. Nangreave, X. Liu, L. Lin, D. Qiu, Z. G.

182.

A. E. Gerdon, S. S. Oh, K. Hsieh, Y. Ke, H. Yan, and H. T. Soh,

 

Wang, G. Zou, X. Liang, H. Yan, and B. Ding, DNA origami as

 

Controlled delivery of DNA origami on patterned surfaces. Small

 

 

 

a carrier for circumvention of drug resistance. J. Am. Chem. Soc.

 

5, 1942 (2009).

 

 

 

 

 

134, 13396 (2012).

 

 

183.

R. J. Kershner, L. D. Buzano, C. M. Micheel, A. M. Hung, A. R.

 

 

 

201.

S. M. Douglas, I. Bachelet, and

G. M. Church, A logic-gated

 

Fornof, J. N. Cha, C. T. Rettner, M. Bersani, J. Frommer, P. W.

 

 

nanorobot

for targeted

transport

of molecular payloads. Science

 

K. Rothemund, and G. M. Wallraff, Placement and orientation of

 

 

 

335, 831 (2012).

 

 

 

individual DNA shapes on lithographically patterned surfaces. Nat.

 

 

 

 

202. X. Ouyang, J. Li, H. Liu, B. Zhao, J. Yan, Y. Ma, S. Xiao, S. Song,

 

Nanotechnol. 4, 557 (2009).

 

 

 

 

Q. Huang, J. Chao, and C. Fan, Rolling circle amplification-based

184.

A. M. Hung, C. M. Micheel, L. D. Buzano, L. W. Osterbur, G. M.

 

 

DNA origami nanostructures for intracellular delivery of immunos-

 

Wallraff, and J. N. Cha, Large-area spatially ordered arrays of gold

 

 

 

timulatory drugs. Small 9, 3082 (2013).

 

nanoparticles directed by lithographically confined DNA origami.

 

 

203. X. Shen, Q. Jiang, J. Wang, L. Dai, G. Zou, Z. G. Wang, W. Q.

 

Nat. Nanotechnol. 5, 121 (2010).

 

 

Chen, W. Jiang, and B. Ding, Visualization of the intracellular loca-

185.

O. C. Farokhzad and R. Langer, Impact of nanotechnology on drug

 

 

tion and stability of DNA origami with a label-free fluorescent

 

delivery. ACS Nano 3, 16 (2009).

 

186.

S. H. Ko, H. Liu, Y. Chen, and C. Mao, DNA nanotubes as combi-

204.

probe. Chem. Commun. 48, 11301 (2012).

 

natorial vehicles for cellular delivery. Biomacromolecules 9, 3039

S. Rinker, Y. Liu, and H. Yan, Two-dimensional LNA/DNA arrays:

 

(2008).

 

 

 

Estimating the helicity of LNA/DNA hybrid duplex. Chem. Com-

187.

J. W. Keuma and H. Bermudez, Enhanced resistance of DNA nano-

205.

mun. 42, 2675 (2006).

 

 

 

structures to enzymatic digestion. Chem. Commun. 45, 7036 (2009).

N. Park, S. H. Um, H. Funabashi, J. Xu, and D. Luo, A cell-free

188.

A. S. Walsh, H. Yin, C. M. Erben, M. J. A. Wood, and A. J.

 

protein-producing gel. Nat. Mater. 8, 432 (2009).

 

Turberfield, DNA cage delivery to mammalian cells. ACS Nano

206.

K. S. Rabe and C. M. Niemeyer, Gene jelly. Nat. Mater. 8, 370

 

5, 5427 (2011).

 

 

(2009).

 

 

 

J. Biomed. Nanotechnol. 10, 2350–2370, 2014

2369