Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
3
Добавлен:
20.04.2023
Размер:
2.07 Mб
Скачать

80

Земли. Известно, что водяной пар конденсируется на крохотных частичках – ядрах конденсации.

3. Крупномасштабная структура Вселенной (КСВ) – структура, образуемая гигантскими звездными островами – галактиками и их системами на различных пространственных масштабах. Современные представления о КСВ базируются как на изучении отдельных систем галактик, так и на статистическом исследовании распределения по небу галактик, находящихся на различном расстоянии от нас. Само существование КСВ отражает неоднородный характер распределения вещества во Вселенной вплоть до масштабов в сотни миллионов световых лет. Изучение КСВ необходимо для понимания процессов образования галактик и скоплений галактик в расширяющейся Вселенной и их последующей эволюции.

Даже поверхностное знакомство с астрономическим объектами и их положением на небе и в пространстве показывает, что космические тела входят в состав систем различного масштаба.

Все планеты (кроме двух самых близких к Солнцу) окружены спутниками и вместе с ними обращаются вокруг Солнца, образуя Солнечную систему. Обнаружены планетные системы и вокруг многих других звезд. Более половины наблюдаемых звезд входит в состав звездных пар или кратных звездных систем (Солнце в этом отношении – нетипичная звезда, поскольку она одиночная). Звезды также образуют скопления.

Вся совокупность наблюдаемых на небе звезд образует обширную систему

– Галактику. Галактики являются основными «кирпичиками» Вселенной, именно в них сосредоточена подавляющая часть всех звезд, существующих в природе, а также большие массы межзвездного газа. Современным крупным телескопам потенциально доступны наблюдения многих сотен миллионов галактик, разбросанных по всему небу и находящихся в пределах 10–12 млрд. световых лет от нас.

То, что галактики распределены на небе, как и звезды, неравномерно, выяснилось даже раньше, чем была установлена их физическая природа. Уже наблюдения с небольшими телескопами привели к выводу, что в некоторых областях неба туманных пятен (так выглядят галактики в окуляр телескопа) много, а в некоторых – они практически отсутствуют. Тенденция туманных пятен скапливаться в «пласты» отмечал еще Гершель. Правда, наблюдаемое распределение галактик на небе оказалось связанным не только с особенностью их пространственного скучивания, но и с тем, что в направлении на полосу Млечного Пути межзвездная пыль сильно поглощает свет далеких объектов, и, как удалось выяснить уже в 20 в., галактики там практически отсутствуют просто из-за непрозрачности межзвездного пространства. Но вдали от Млечного Пути поглощение мало, а наблюдаемые галактики тем не менее распределены неравномерно. Так большое число сравнительно ярких галактик (10–13 звездной величины) наблюдается в созвездии Девы, где они образуют крупное скопление. Его так и называют – скоплением в Деве или латинским именем скопления – Virgo (читается: Вирго). С помощью больших телескопов

81

удается выделить тысячи скоплений галактик на различном расстоянии от нас. Обнаружены и более крупные образования, чем скопления (см. ниже).

Структуры, образуемые галактиками и их системами, называют крупномасштабными структурами. Вопрос об их существовании и их свойствах оказался тесно связанным с фундаментальной научной проблемой возникновения и эволюции всей наблюдаемой Вселенной.

Поскольку многие звезды нашей Галактики образуют парные и кратные системы, и даже целые звездные скопления, неудивительно, что это же относится и к галактикам. Со временем астрономы убедились, что найти одиночную галактику даже труднее, чем одиночную звезду. Были обнаружены обособленные системы галактик с самым различным количеством членов, с размером от нескольких десятков тысяч до нескольких десятков миллионов световых лет.

Самые маленькие системы, образуемые галактиками – это двойные и кратные системы, содержащие всего несколько сравнимых по яркости членов, за ними идут группы галактик из несколько десятков членов и, наконец, скопления галактик, объединяющие сотни и тысячи отдельных звездных островов. Вместе с галактиками концентрируется также и разреженная газовая среда. Она играет важную роль в формировании и эволюции этих систем. Газ между галактиками в группах или скоплениях, как правило, очень сильно нагрет, его температура – миллионы или десятки миллионов градусов. Из-за низкой плотности он практически не испускает видимые лучи, но его свечение, тем не менее, улавливается космическими телескопами, принимающими потоки рентгеновских квантов, которые излучаются газом при такой температуре. Несмотря на высокую разреженность (плотность в сотни и тысячи раз меньше, чем плотность межзвездной среды в окрестности Солнца), межгалактический газ может заключать в себе очень большую массу. В некоторых скоплениях масса газа существенно превышает суммарную массу звезд всей совокупности галактик.

Основная сложность поисков и выделения систем галактик связана с тем, что мы видим мир галактик двумерным, в проекции на небо. Любая область неба содержит и близкие, и далекие галактики, причем не всегда легко отличить одни от других. Отдельные галактики или даже системы галактик могут случайно проектироваться друг на друга. Таких «ложных» членов группировок известно очень много, поэтому требуется независимое определение расстояний до каждой галактики, чтобы убедиться, что она действительно входит в состав данной системы. В большинстве случаев достаточно надежным критерием принадлежности галактик к системе является, помимо их близости на небе, сходное значение лучевых скоростей, отличающихся от средней скорости членов системы не более чем на несколько сотен км/с для кратных систем и не более чем на 2–3 тыс. км/с для богатых скоплений галактик.

Первый каталог двойных и кратных галактик, насчитывающий более 8 сотен систем, составил шведский астроном Эрик Хольмберг в 1937, тщательно

82

изучив положение галактик примерно на 6000 снимках неба, полученных на Гейдельбергской обсерватории. Во время составления этого каталога лучевые скорости были измерены лишь у немногих галактик, поэтому Хольмберг исходил только из близости галактик друг к другу на небе. По его данным, около четверти всех галактик относится к двойным системам. Впоследствии, правда, оказалось, что ощутимая доля систем Хольмберга фиктивна, что связано, в основном, с недостатком фотографических изображений. Однако общая доля галактик в кратных системах была оценена более или менее верно, а некоторые статистические закономерности, найденные Хольмбергом, сохранили свою важность и в наше время. Оценка большой доли галактик, находящихся в двойных системах, была в 1970-х подтверждена советским астрономом Игорем Караченцевым. Он составил современный каталог изолированных пар галактик, включающий информацию о более чем 600 парах северного неба. Многие из этих парных галактик после составления каталога были включены в программы исследования на крупнейших телескопах мира. В несколько раз больше галактик, чем образующих пары, входит в состав систем, содержащих три (триплеты), четыре (квартеты), пять (квинтеты), шесть (секстеты) или большее число членов. Такие образования обычно называют кратными системами или небольшими группами галактик. Их изучение дает ключ к пониманию того, как формировались галактики и как они влияют на эволюцию друг друга.

Тема 3.3. Солнечная система и ее происхождение

План:

1.Строение и состав Солнечной системы.

2.Планеты и группы планет Солнечной системы.

3.Малые тела Солнечной системы: кометы, астероиды, метеориты.

4.Происхождение Солнечной системы.

Список рекомендуемой литературы:

1.Горелов, А.А. Концепции современного естествознания: учебное пособие / А.А. Горелов. – М.: Центр, 2003. – 208 с.

2.Дубкова, С.И. История астрономии: рассказы о самых выдающихся за последние 3000 лет открытиях в науке о небе и ее гениальных творцах, которые изменили представление о Вселенной / С.И. Дубкова. – М.: Белый город, 2002.

192 с.

3.Естествознание 10-11классы: профильное обучение: учебное пособие / Л.Н. Харченко. – М.: Дрофа, 2007. – 223 с.

4.Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям / А.П. Садохин. – 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2009. – 447 с.

5.Рузавин, Г.И. Концепции современного естествознания: учебник для студ. высших учебных заведений, обучающихся по гуманитарным специальностям / Г.И. Рузавин. – 3-е изд., стер. – М.: ИНФРА-М, 2012. – 270 с.

83

1. Солнечная система – планетная система, включающая в себя центральную звезду – Солнце – и все естественные космические объекты, обращающиеся вокруг Солнца. Именно в Солнце сосредоточена основная часть вещества Солнечной системы. Большая часть массы объектов, связанных с Солнцем гравитацией, содержится в восьми относительно уединённых планетах, имеющих почти круговые орбиты и располагающихся в пределах почти плоского диска – плоскости эклиптики.

Размером Солнце также значительно превосходит любую планету ее системы.

Солнечная система является частью Млечного Пути – спиральной галактики, имеющей диаметр около 30 тысяч парсек (или 100 тысяч световых лет) и состоящей из приблизительно 200 миллиардов звёзд. Мы живём вблизи плоскости симметрии галактического диска (на 20–25 парсек выше, т. е. севернее него), на расстоянии около 8 тысяч парсек (27 тысяч световых лет) от галактического центра (т. е. практически на полпути от центра Галактики к её краю), на окраине рукава Ориона – одного из спиральных рукавов Млечного Пути.

Солнце вращается вокруг галактического центра по почти круговой орбите со скоростью около 220 км/c и совершает полный оборот за 226 миллионов лет. Этот промежуток времени называется галактическим годом.

Помимо кругового движения по орбите, Солнечная система совершает вертикальные колебания относительно галактической плоскости, пересекая её каждые 30–35 миллионов лет и оказываясь то в северном, то в южном галактическом полушарии.

Солнечный ветер (поток плазмы от Солнца) создаёт пузырь в межзвёздной среде, называемый гелиосферой, который простирается до края рассеянного диска. Гипотетическое облако Оорта, служащее источником долгопериодических комет, может простираться на расстояние примерно в тысячу раз больше по сравнению с гелиосферой.

2. Крупнейшими после Солнца объектами Солнечной системы являются планеты и их спутники. Считается, что все планеты Солнечной системы возникли одновременно примерно 4,6 млрд. лет назад. В современной космогонии доминирует концепция холодного начального состояния планет, которые под влиянием электромагнитных и гравитационных сил образовались в результате объединения твердых частиц газопылевого облака, окружавшего Солнце.

По физическим характеристикам большие планеты разделяются на две группы. Одну из них – планеты земной группы – составляют Земля и сходные с ней Меркурий, Венера и Марс. Во вторую входят планеты-гиганты: Юпитер, Сатурн, Уран и Нептун. До 2006 г. самой далекой от Солнца большой планетой считался Плутон. Теперь он вместе с другими объектами подобного размера – давно известными крупными астероидами и объектами, обнаруженными на окраинах Солнечной системы, – относится к числу планет-карликов.

84

Разделение планет на группы прослеживается по трем характеристикам (масса, давление, вращение), но наиболее четко – по плотности. Планеты, принадлежащие к одной и той же группе, по плотности различаются между собой незначительно, в то время как средняя плотность планет земной группы примерно в 5 раз больше средней плотности планет-гигантов.

Большая часть массы планет земной группы приходится на долю твердых веществ. Земля и другие планеты земной группы состоят из оксидов и других соединений тяжелых химических элементов: железа, магния, алюминия и других металлов, а также кремния и других неметаллов. На долю четырех наиболее обильных в твердой оболочке нашей планеты (литосфере) элементов

– железа, кислорода, кремния и магния – приходится свыше 90 % ее массы. Малая плотность планет-гигантов (у Сатурна она меньше плотности воды)

объясняется тем, что они состоят в основном из водорода и гелия, которые находятся преимущественно в газообразном и жидком состояниях. Атмосферы этих планет содержат также соединения водорода – метан и аммиак. Различия между планетами двух групп возникли уже на стадии их формирования (см. §

5).

Из планет-гигантов лучше всего изучен Юпитер, на котором даже в небольшой школьный телескоп видны многочисленные темные и светлые полосы, тянущиеся параллельно экватору планеты. Так выглядят облачные образования в его атмосфере, температура которых всего -140 °C, а давление примерно такое же, как у поверхности Земли. Красновато-коричневый цвет полос объясняется, видимо, тем, что, помимо кристаллов аммиака, составляющих основу облаков, в них содержатся различные примеси. На снимках, полученных космическими аппаратами, видны следы интенсивных и иногда устойчивых атмосферных процессов. Так, уже свыше 350 лет на Юпитере наблюдают атмосферный вихрь, получивший название Большое Красное Пятно. Атмосферные течения и облака зафиксированы космическими аппаратами и на других планетах-гигантах, хотя развиты они в меньшей степени, чем на Юпитере.

Строение всех планет Солнечной системы слоистое. Слои различаются по плотности, химическому составу и другим физическим характеристикам. В недрах планет происходит радиоактивный распад элементов. Поверхность планет формируется под действием двух типов факторов: эндогенных и экзогенных. Эндогенные факторы – это процессы, происходящие в ядре планеты и меняющие ее внешний облик: перемещения участков коры, вулканические извержения, горообразование и т.п. Экзогенные факторы связаны с внешними воздействиями: химические реакции при соприкосновении с атмосферой, изменения под воздействием ветра,падение метеоритов.

Предполагают, что по мере приближения к центру планет-гигантов водород вследствие возрастания давления должен переходить из газообразного в газожидкое состояние, при котором сосуществуют его газообразная и жидкая фазы. В центре Юпитера давление в миллионы раз превышает атмосферное давление, существующее на Земле, и водород приобретает свойства,

85

характерные для металлов. В недрах Юпитера металлический водород вместе с силикатами и металлами образует ядро, которое по размерам примерно в 1,5 раза, а по массе в 10–15 раз превосходит Землю.

Масса. Любая из планет-гигантов превосходит по массе все планеты земной группы, вместе взятые. Самая крупная планета Солнечной системы – Юпитер больше самой крупной планеты земной группы – Земли по диаметру в 11 раз и по массе в 300 с лишним раз.

Вращение. Отличия между планетами двух групп проявляются и в том, что планеты-гиганты быстрее вращаются вокруг оси, и в числе спутников: на 4 планеты земной группы приходится всего 3 спутника, на 4 планеты-гиганта – более 120. Все эти спутники состоят из тех же веществ, что и планеты земной группы, – силикатов, оксидов и сульфидов металлов и т. д., а также водяного (или водно-аммиачного) льда. Помимо многочисленных кратеров метеоритного происхождения, на поверхности многих спутников обнаружены тектонические разломы и трещины их коры или ледяного покрова. Самым удивительным оказалось открытие на ближайшем к Юпитеру спутнике Ио около десятка действующих вулканов. Это первое достоверное наблюдение вулканической деятельности земного типа за пределами нашей планеты.

Кроме спутников, планеты-гиганты имеют еще и кольца, которые представляют собой скопления небольших по размеру тел. Они так малы, что в отдельности не видны. Благодаря их обращению вокруг планеты кольца кажутся сплошными, хотя сквозь кольца Сатурна, например, просвечивают и поверхность планеты, и звезды. Кольца располагаются в непосредственной близости от планеты, где не могут существовать крупные спутники.

В настоящее время в составе Солнечной системы насчитывается восемь планет, которые расположены в следующем порядке от Солнца: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. В современном естествознании каждая из планет характеризуется девятью основными параметрами. К ним относятся расстояние от Солнца, период обращения вокруг Солнца, период обращения вокруг своей оси, средняя плотность, диаметр экватора в километрах, относительная масса, температура поверхности, число спутников, преобладание газа в атмосфере.

Ближайшей к Солнцу планетой является Меркурий, который состоит из большого железного ядра, расплавленной каменистой мантии и твердой коры. По внешнему виду Меркурий напоминает Луну. Его поверхность испещрена кратерами. Сила тяжести на планете в два раза меньше земной, поэтому атмосфера практически отсутствует, газы могут свободно покидать планету. Температура на Меркурии – от +350°С на освещенной Солнцем (дневной) стороне до – 170°С на ночной.

Венера по размерам, массе и плотности сходна с Землей. Однако она имеет очень плотную атмосферу, пропускающую солнечное излучение внутрь и не выпускающую его обратно. Поэтому на Венере давно действует парниковый эффект, который начинает отмечаться сейчас и на Земле. В результате парникового эффекта температура поверхности Венеры составляет 400–500°С.

86

Венера, как и Меркурий, состоит из металлического (железоникелевого) ядра, расплавленной мантии и твердой коры. Поверхность Венеры представляет собой знойную пустыню с небольшими низинами и нагорьями высотой до 3 км.

Отличительной особенностью Марса является высокое содержание железа и окислов других металлов в поверхностном слое. Поэтому его поверхность имеет вид красной каменистой пустыни, окутанной тучами красного песка. Наряду с абсолютно плоскими пустынями на Марсе есть горные хребты, глубокие каньоны, огромные вулканы. Крупнейший марсианский вулкан – пик Олимп – имеет диаметр 700 км и высоту 26 км. На Марсе существуют также полярные шапки, состоящие из сухого льда (замерзшего углекислого газа). Обнаруженные русла высохших рек свидетельствуют о теплом климате, существовавшем на этой планете ранее.

Юпитер – самая крупная планета Солнечной системы. Вместе со своими 16 спутниками он составляет Солнечную систему в миниатюре. Масса Юпитера в три раза превосходит массу всех остальных планет Солнечной системы и в 318 раз больше массы Земли. В центре Юпитера находится небольшое каменное ядро. Его окружает вначале слой металлического водорода, по свойствам напоминающего жидкий металл, затем слой жидкого водорода. Плотная атмосфера Юпитера состоит из водорода, гелия, метана и аммиака и по толщине в 8–10 раз превосходит земную атмосферу. Быстрое вращение Юпитера вокруг своей оси вызывает мощные ветры и вихри на его поверхности. По этой же причине сутки на Юпитере длятся всего 10 часов.

Сатурн широко известен своими кольцами, которые состоят из огромного количества кусков льда различного размера – от пылинок до глыб. Эта планета имеет самую низкую плотность среди всех планет Солнечной системы. Его небольшое ядро изо льда и камня окружено слоями металлического и жидкого водорода. В атмосфере Юпитера бушуют ветры, скорость которых достигает

1800 км/ч.

Уран и Нептун – более далекие и хуже изученные планеты. Они имеют более высокую плотность, чем Сатурн, поэтому на них больше веществ тяжелее водорода и гелия. Эти планеты имеют ядра диаметром 16 000 км, которые окружены мантиями, состоящими изо льда. Далее идут газовые оболочки, состоящие из водорода с примесью метана. Уран и Нептун так же, как и Сатурн, имеют спутники, но о них нам почти ничего не известно.

3. Помимо восьми крупных планет в Солнечной системе имеется огромное множество мелких спутников, называемых астероидами, кометами и метеорами. Большинство из них находится в поясе астероидов, между орбитами Марса и Юпитера.

Астероиды представляют собой малые планеты, имеющие в поперечнике диаметр до 1000 км. Всего в астрономических каталогах зафиксировано более 6000 малых планет. Из них самой крупной является планета Церера. Сталкиваясь друг с другом, астероиды дробятся на метеориты.

Помимо астероидов, движущихся по орбитам, Солнечную систему пересекают кометы. В переводе на русский слово «комета» означает «хвостатая

87

звезда». Комета состоит из головы, небольшого плотного ядра и хвоста длиной

вдесятки миллионов километров. Ядра комет имеют размеры несколько километров и состоят из каменных и металлических образований, заключенных

вледяную оболочку из замерзших газов. Согласно современным данным, кометы являются побочными продуктами формирования планет-гигантов. Кометы живут сравнительно недолго: от нескольких столетий до нескольких тысячелетий, со временем они рассыпаются, оставляя после себя облака космической пыли.

Кроме астероидов и комет в межпланетном пространстве беспорядочно двигаются небольшие небесные тела, которые довольно часто попадают в земную атмосферу. Самые мелкие из них – метеоры – имеют массу от нескольких десятков килограммов до нескольких граммов, более крупные – метеориты – достигают нескольких десятков тонн. Большинство из них полностью сгорает в верхних слоях атмосферы на высоте 40–70 км, а самые крупные могут достигать земной поверхности, оставляя на ней кратеры.

4.До настоящего времени вопрос о происхождении Солнечной системы не получил своего точного научного описания. Тем не менее достоверно известно, что Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце – звезда второго (или еще более позднего) поколения. Так что Солнечная система возникла на продуктах жизнедеятельности звезд предыдущего поколения, скапливавшихся в газопылевых облаках.

Гипотеза X. Альвена и С. Аррениуса. На протяжении XX в. выдвигался целый ряд противоречащих друг другу гипотез о происхождении Солнца и Солнечной системы, из которых наиболее убедительной и популярной стала гипотеза шведских астрономов X. Альвена и С. Аррениуса. Они исходили из предположения, что в природе существует единый механизм планетообразования, действие которого проявляется и в случае образования планет около звезды, и в случае появления планет-спутников около планеты. Для объяснения - этого механизма они привлекают совокупность различных сил – гравитацию, магнитогидродинамику, электромагнетизм, плазменные процессы.

Альвен и Аррениус отказались от традиционного допущения об образовании Солнца и планет из одного массива вещества в одном нераздельном процессе. Они считают, что сначала из газопылевого облака возникло первичное тело – звезда, а затем к нему из другого газопылевого облака, через которое по своей орбите двигалось Солнце, поступил материал для образования вторичных тел. Таким образом, к моменту, когда начали образовываться планеты, центральное тело системы уже существовало. К такому выводу исследователи пришли в результате многолетнего изучения изотопного состава вещества метеоритов, Солнца и Земли. При этом были обнаружены отклонения в изотопном составе ряда элементов, содержащихся в метеоритах и земных породах, от изотопного состава тех же элементов на Солнце. Это говорит о различном происхождении этих элементов. Отсюда следует, что основная масса вещества Солнечной системы поступила из одного

88

газопылевого облака, и из него образовалось Солнце. Значительно меньшая часть вещества, не превышающая 0,15 массы Солнца, с другим изотопным составом поступила из другого газопылевого облака, и она послужила материалом для формирования планет и метеоритов. Если бы масса этого облака была больше, оно аккумулировалось бы не в систему планет, а в звездообразный спутник Солнца.

Чтобы образовать планетную систему, звезда должна обладать рядом признаков:

мощным магнитным полем, величина которого превышает определенное критическое значение;

пространство в окрестностях звезды должно быть заполнено разреженной плазмой, создающей солнечный ветер.

Молодое Солнце, предположительно обладавшее значительным магнитным моментом, имело размеры, превышавшие нынешние, но не доходившие до орбиты Меркурия. Его окружала гигантская сверхкорона, представлявшая собой разреженную намагниченную плазму. Как и в наши дни,

споверхности Солнца вырывались протуберанцы, но выбросы тех лет имели протяженность в сотни миллионов километров и достигали орбиты современного Плутона. Токи в них оценивались в сотни миллионов ампер и более. Это способствовало стягиванию плазмы в узкие каналы. В них возникали разрывы, пробои, откуда разбегались мощные ударные волны, уплотнявшие плазму на пути их следования. Плазма сверхкороны быстро становилась неоднородной и неравномерной.

Когда молодое Солнце начало свое прохождение через газопылевое облако, мощное гравитационное воздействие звезды начало притягивать поток газовых и пылевых частиц, послуживших материалом для образования вторичных тел. Поступавшие из внешнего резервуара нейтральные частицы вещества под действием гравитации падали к центральному телу. Но при этом они попадали в сверхкорону Солнца. Там они ионизировались, и в зависимости от химического состава тормозились на разных расстояниях от центрального тела. Таким образом, с самого начала имела место дифференциация допланетного облака по химическому и весовому составу. В конечном счете, выделились три-четыре концентрические области, плотность частиц в которых примерно на семь порядков превышала их плотности в промежутках. Это объясняет тот факт, что вблизи Солнца располагаются планеты земной группы, которые при относительно малых размерах имеют высокую плотность (от 3 до 5,5 г/см3), а планеты-гиганты – намного меньшие плотности (1-2 г/см3).

Сверхкорона, по мере накопления в ней выпадающего вещества, начинала отставать в своем вращении от вращения центрального тела. Стремление выровнять угловые скорости тела и короны заставляли плазму вращаться быстрее. Но это происходило за счет замедления вращения центрального тела. Ускорение плазмы увеличивало центробежные силы, оттесняя их от звезды. Между центральным телом и плазмой образовалась область с очень низкой плотностью вещества. Таким образом, создалась благоприятная обстановка для

89

конденсации нелетучих веществ путем их выпадения из плазмы в виде отдельных зерен. Эти зерна получали от плазмы импульс и, двигаясь по орбитам будущих планет, уносили с собой часть момента количества движения в Солнечной системе. Сегодня на долю планет, суммарная масса которых составляет только 0,1% массы всей системы, приходится 99% суммарного момента количества движения.

Множественные соударения между зернами приводили к их агрегации в большие группы. Затем эти зерна слипались в зародышевые ядра, к которым продолжали прилипать частицы, и они постепенно разрастались до крупных тел – планетезималий. Сталкиваясь друг с другом, планетезималии образовывали допланетные тела. Их первоначальное количество оценивается во множество миллионов. Образование планетезималий продолжалось десятки тысяч лет. Формирование же самих планет заняло от 105 до 108 лет. Столкновение планетезималий друг с другом привело к тому, что наиболее крупные «з них начали еще более увеличиваться в размерах, вследствие чего и образовались планеты. А как только планетные тела оформились настолько, что возле них появилось достаточно сильное собственное магнитное поле, то начался процесс образования спутников, в миниатюре повторяющий то, что произошло при образовании самих планет.

Так, в теории Альвена и Аррениуса пояс астероидов – это струйный поток, в котором из-за нехватки выпавшего вещества процесс планетообразования прервался на стадии планетезималий. Метеориты и кометы, согласно данной модели, формировались на окраине Солнечной системы, за орбитой Плутона. В отдаленных от Солнца областях существовала слабая плазма. В ней механизм выпадения вещества еще работал, но струйные потоки, в которых рождаются планеты, образоваться уже не могли. Слипание выпавших там частиц привело к единственно возможному результату – образованию кометных тел.

3.4. Методологические установки «неклассической» астрономии

План:

1.Эмпирические и теоретические основы современной астрономии.

2.Общая идея о нестационарности Вселенной.

3.Проблема множественности миров.

Список рекомендуемой литературы:

1.Горелов, А.А. Концепции современного естествознания: учебное пособие / А.А. Горелов. – М.: Центр, 2003. – 208 с.

2.Дубкова, С.И. История астрономии: рассказы о самых выдающихся за последние 3000 лет открытиях в науке о небе и ее гениальных творцах, которые изменили представление о Вселенной / С.И. Дубкова. – М.: Белый город, 2002.

192 с.

3.Естествознание 10-11классы: профильное обучение: учебное пособие / Л.Н. Харченко. – М.: Дрофа, 2007. – 223 с.

Соседние файлы в папке из электронной библиотеки