Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

747 sensor network operation-1-187-4

.pdf
Скачиваний:
3
Добавлен:
13.12.2023
Размер:
183.59 Кб
Скачать

30 SENSOR DEPLOYMENT, SELF-ORGANIZATION, AND LOCALIZATION

 

140

 

 

 

 

 

 

 

Span

 

 

 

 

 

120

SCARE

 

 

 

 

elected

 

 

 

 

 

100

 

 

 

 

 

of coordinators

 

 

 

 

 

80

 

 

 

 

 

60

 

 

 

 

 

Number

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

50

100

150

200

250

300

Number of nodes

Figure 2.9 Number of coordinators selected with an increase in nodes.

Section 2.2.5. SCARE selects almost the same number of coordinators as in the ideal case. This behavior is different from the behavior of SCARE in Figure 2.9 as here the nodes are placed in a regular fashion and not randomly deployed. Random deployment results in SCARE selecting more nodes as coordinators to cover the entire grid and still maintain connectivity. Any self-configuration algorithm should have minimal control message overhead. In Figure 2.13, we compare the number of control messages used by SCARE and Span for the self-configuration. SCARE uses a smaller number of control messages compared to Span because it takes advantage of the random initialization of the nodes. This leads to a partial configuration of the network; hence SCARE uses fewer number of control messages to achieve self-configuration.

 

10000

 

 

 

 

 

 

9500

 

 

 

 

 

Coverage

9000

 

 

 

 

 

8500

 

 

 

 

 

 

 

 

 

 

 

 

8000

 

 

 

 

 

 

 

 

 

 

Span

 

 

 

 

 

 

SCARE

 

 

7500

 

 

 

 

 

 

50

100

150

200

250

300

Number of nodes

Figure 2.10 Coverage versus number of nodes for SCARE and Span.

2.2 SCARE

31

 

60

 

 

 

 

SCARE

 

 

 

 

 

 

as coordinators

55

 

 

 

 

Span

50

 

 

 

 

 

45

 

 

 

 

 

40

 

 

 

 

 

elected

 

 

 

 

 

35

 

 

 

 

 

 

 

 

 

 

 

of nodes

30

 

 

 

 

 

25

 

 

 

 

 

Fraction

20

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

10

100

150

200

250

300

 

50

Number of nodes

Figure 2.11 Fraction of nodes selected as coordinators in SCARE and Span.

Figure 2.14 shows the effects of mobility on packet loss rate for both Span and SCARE. Nodes follow the random way-point model described in the previous subsubsection. Packet loss rate is calculated as the ratio of the number of lost packets to the number of packets actually sent. We note that the packet loss rates for both these methods are comparable.

Figure 2.15 shows the fraction of surviving nodes as a function of simulation time for both SCARE and Span. SCARE uses fewer control messages and consumes less energy for self-configuration and reconfiguration of the network. The number of surviving nodes falls below 80% at 765 for SCARE compared to 700 for Span.

 

50

 

 

 

 

 

 

 

 

 

 

Ideal

 

 

 

 

 

 

SCARE

 

coordinators

45

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

of selected

35

 

 

 

 

 

30

 

 

 

 

 

Number

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

50

100

150

200

250

300

Number of nodes

Figure 2.12 Coordinators selected in SCARE versus an ideal number of coordinators selected based on square tiling.

32 SENSOR DEPLOYMENT, SELF-ORGANIZATION, AND LOCALIZATION

 

1400

 

 

 

 

 

 

 

 

 

 

 

1200

 

Span

 

 

 

 

 

 

 

 

 

 

SCARE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

messages

1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of control

800

 

 

 

 

 

 

 

 

 

 

600

 

 

 

 

 

 

 

 

 

 

number

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

Total

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

100

200

300

400

500

600

700

800

900

1000

Simulation time (s)

Figure 2.13 Number of control messages used for self-configuration.

Effect of Location Estimation Error on Results We next investigate how errors in distance estimation affect the performance of SCARE. Since nodes use distance estimation only to determine their eligibility to go to the sleep state, we do not expect SCARE to be significantly affected because of moderate errors in distance estimates.

To measure this feature of SCARE quantitatively, we ran simulations by introducing artificial errors in distance estimation. We modeled such errors by shifting the location of each node by a random amount in the range [x ± e, y ± e], where e is either 10 or 20% of the radio range of a node and [x, y] is the location of a sensor node. Nodes use these

 

16 x 10−3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCARE

 

 

 

14

 

 

 

 

 

 

Span

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

rate

10

 

 

 

 

 

 

 

 

 

loss

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Packet

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

2

200

300

400

500

600

700

800

900

1000

 

100

Pause time (s)

Figure 2.14 Packet loss rate as a function of pause time.

 

 

 

 

 

 

 

2.2

SCARE

33

 

 

 

 

 

 

SCARE

 

 

 

 

1

 

 

 

 

Span

 

 

 

 

 

 

 

 

 

 

 

 

nodes

0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of surviving

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fraction

0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

0

200

400

600

800

1000

1200

 

 

Simulation time (s)

Figure 2.15 Fraction of nodes remaining with time for Span and SCARE.

artificial locations rather than their real location to estimate the distance between them and a coordinator node. We refer to this scheme as either SCARE-10 or SCARE-20.

Figure 2.16 shows the results of these simulations. The simulations using SCARE-10 and SCARE-20 are based on incorrect estimation of the distance from the coordinators by the nodes. Consequently, the number of coordinators is different from the case when there is no error. However, the increase in the number of coordinators is negligible, while the decrease in coverage is found to be minimal. In the case of SCARE-10, the increase is only 3% for a small number of nodes and negligible (<0.2%) for a large number of nodes.

 

50

 

 

 

 

 

 

48

 

 

 

 

 

elected

46

 

 

 

 

 

44

 

 

 

 

 

 

 

 

 

 

 

coordinators

42

 

 

 

 

 

40

 

 

 

 

 

38

 

 

 

 

 

of

 

 

 

 

 

 

 

 

 

 

 

Number

36

 

 

 

 

 

34

 

 

 

 

 

 

 

 

 

SCARE

 

 

 

 

 

 

 

 

32

 

 

 

SCARE10

 

 

 

 

 

SCARE20

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

50

100

150

200

250

300

Number of nodes

Figure 2.16 Effect of error in distance estimation on SCARE.