Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Биохимия / Синтез_и_изучение_свойств_новых_материалов_с_противоопухолевой

.pdf
Скачиваний:
1
Добавлен:
23.03.2024
Размер:
6.66 Mб
Скачать

141

107.Dolmans D., Fukumura D., Jain R.K. Photodynamic therapy for cancer // Nature Reviews Cancer. – 2003. – Vol. 3. – № 5. – P. 380–387.

108.Reinhard A. et al. Photodynamic therapy as a new treatment modality for inflammatory and infectious conditions // Expert Review of Clinical Immunology. Expert Reviews Ltd., 2015. Vol. 11, № 5. P. 637–657.

109.Ji W. et al. The effect of Radachlorin® PDT in advanced NSCLC: A pilot study // Photodiagnosis Photodyn. Ther. 2013. Vol. 10, № 2. P. 120–126.

110.Kochneva E. V. et al. Photosensitizer Radachlorin®: Skin cancer PDT phase II

clinical trials // Photodiagnosis Photodyn. Ther. – 2010. – Vol. 7. – № 4. – P. 258–267.

111.O. V. Mikolaichuk, et. al. Study of biocompatibility, cytotoxic activity in vitro of a tetrazole-containing derivative of 2-amino-4,6-di(aziridin-1-yl)-1,3,5-triazine. // Biochemical and Biophysical Research Communications. – 2022. – Vol. 629. – P. 176-

112.Santoso JT, Lucci JA, Coleman RL, Schafer I, Hannigan EV. Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: A randomized trial. Cancer Chemother Pharmacol. – 2003. – Vol. 52. – P. 13-18.

113.Marwa H. El-Wakil et. al. Discovery of a novel DNA binding agent via design and synthesis of new thiazole hybrids and fused 1,2,4-triazines as potential antitumor agents: Computational, spectrometric and in silico studies. // Bioorganic Chemistry. – 2019. – Vol.

90.– P. 103089,

114.Новиков В. Е., и др. Перспективы применения ингибиторов фактора адаптации к гипоксии в онкологии. // Вестник Смоленской государственной медицинской академии. – Том 14. – № 3. – 2015. – стр. 21–26.

115.Huang Z.R. et al. Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion // Acta Pharmacol. Sin. – 2008. – Vol. 29. – № 9. P. 1094–

1102.

116. Mikolaichuk O. V et al. Biocompatibility and bioactivity study of a cytostatic drug belonging to the group of alkylating agents of the triazine derivative class // J. Mol. Liq. – 2021. – Vol. 343. – P. 117630.

117. V. V. Sharoyko, et. al. Novel non-covalent conjugate based on graphene oxide and alkylating agent from 1,3,5-triazine class // J. Mol. Liq. – 2023. – Vol. 372. – P. 121203.

142

118.Pochkaeva E.I. et al. Polythermal density and viscosity, nanoparticle size distribution, binding with human serum albumin and radical scavenging activity of the C60- L-arginine (C60(C6H13N4O2)8H8) aqueous solutions // J. Mol. Liq. – 2020. – Vol. 297. – P. 111915.

119.Ageev S. V. et al. Density, speed of sound, viscosity, refractive index, surface tension and solubility of C60[C(COOH)2]3 // J. Mol. Liq. – 2019. – Vol. 291. – P. 111256.

120.Serebryakov E.B. et al. Physico-chemical properties of C70-L-threonine bisadduct (C70(C4H9NO2)2) aqueous solutions // J. Mol. Liq. – 2019. – Vol. 279. – P. 687–699.

121.Podolsky N.E. et al. Physico-chemical properties of C60(OH)22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity // J. Mol. Liq. – 2019. – Vol. 278. – P. 342–355.

122.Serebryakov E.B. et al. Physico-chemical properties of the C70-L-lysine aqueous solutions // J. Mol. Liq. – 2018. – Vol. 256. – P. 507–518.

123.Semenov K.N. et al. Physico-chemical properties of the C60-L-threonine water solutions // J. Mol. Liq. – 2017. – Vol. 242. – P. 940–950.

124.Sharoyko V. V. et al. Physicochemical study of water-soluble C60(OH)24 fullerenol // J. Mol. Liq. – 2020. – Vol. 311. – P. 113360.

125.Manyakina O.S. et al. Physico-chemical properties of the water-soluble C70-tris- malonic solutions // J. Mol. Liq. – 2015. – Vol. 211. – P. 487–493.

126.Shestopalova A.A. et al. Physico-chemical properties of the C60-arginine water solutions // J. Mol. Liq. – 2015. – Vol. 211. – P. 301–307.

127.Semenov K.N. et al. Physico-chemical properties of the C60-tris-malonic derivative water solutions // J. Mol. Liq. – 2015. – Vol. 201. – P. 50–58.

128.Semenov K.N. et al. Physico-chemical properties of the fullerenol-C70 water solutions // J. Mol. Liq. – 2015. – Vol. 202. – P. 1–8.

129.Sharoyko V. V. et al. Physicochemical investigation of water-soluble C60(C2NH4O2)4H4 (C60-Gly) adduct // J. Mol. Liq. – 2021. – Vol. 344. – P. 117658.

130.Abdelhalim A.O.E. et al. Graphene Oxide of Extra High Oxidation: A Wafer for Loading Guest Molecules // J. Phys. Chem. Lett. – 2021. – Vol. 12. – № 41. – P. 10015–

10024.

131. Abdelhalim A.O.E. et al. Synthesis, characterisation and biocompatibility of

graphene–L-methionine nanomaterial // J. Mol. Liq. – 2020. Vol. 314. P. 113605.

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

143

132. Olive P.L. et al. Heterogeneity in Radiation-Induced DNA Damage and Repair in

Tumor and Normal Cells Measured Using the “Comet” Assay // Radiat. Res. – 1990. – Vol. 122. – № 1. – P. 86.

133. Pochkaeva E.I., Anufrikov Y.A., Sharoyko V.V., Murin I.V., Faenkova V.P. Isothermal calorimetric titration of human serum albumin with the fullerene C60-L-arginine adduct // Russ. J. Gen. Chem. – 2019. – Vol. 89. – № 8. – P. 1731–1733.

Saint-Petersburg University

Manuscript copyright

Mikolaichuk Olga Vladislavovna

SYNTHESIS AND STUDY OF THE PROPERTIES OF NEW MATERIALS WITH ANTI-TUMOUR ACTIVITY BASED ON POLYNITROGENIC HETEROCYCLES

Scientific specialty 1.4.16. Medical chemistry

The dissertation is submitted for the degree of Candidate of Chemical Sciences

Academic supervisors:

Doctor of Biological Sciences,

Sharoyko Vladimir Vladimirovich

Doctor of Chemical Sciences,

Semenov Konstantin Nikolaevich

Saint Petersburg

2023

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

 

145

 

CONTENTS

LIST OF ABBREVIATIONS .....................................................................................................

147

INTRODUCTION .......................................................................................................................

148

CHAPTER 1. LITERATURE REVIEW.....................................................................................

153

1.METHODS FOR THE SYNTHESIS OF TRI-SUBSTITUTED 1,3,5-

TRIAZINES WITH ANTI-TUMOUR ACTIVITY........................................................

 

 

153

1.1. Cyclisation reactions......................................................................................

 

 

 

 

153

1.2.

Reactions

of

nucleophilic

substitution

of

chlorine atoms

in

2,4,6-trichloro-1,3,5-triazine derivatives.........................................................................

 

 

 

 

159

1.3.

Preparation

of

hybrid

polynitrogenous

heterocyclic derivatives

of

1,3,5-triazine ....................................................................................................................

 

 

 

 

 

 

165

CHAPTER 2. NANOFORM OF DRUGS ..................................................................................

 

 

 

 

172

CHAPTER 3. RESULTS AND DISCUSSION

..........................................................................

 

 

178

3.1. Synthesis of compound 1.57..........................................................................

 

 

 

 

178

3.2. Synthesis of hybrid triazinyltetrazole ............................................................

 

 

179

3.2.1. Synthesis of starting tetrazole- ................................containing derivatives

 

179

3.3. Synthesis and identification of the .................................GO-1.57 conjugate

 

182

3.4. Study of the physicochemical properties of aqueous solutions of

compound 1.57 ................................................................................................................

 

 

 

 

 

 

187

3.4.1. Density of aqueous solutions of ........................................compound 1.57

 

188

3.4.2. Viscosity of aqueous solutions ...............................of the compound 1.57

 

190

3.4.3. Refractions of aqueous solutions ............................of the compound 1.57

193

3.4.4. Mathematical description of T-C dependences of density, viscosity and

refractive index of aqueous solutions of compound ................................................1.57

 

 

196

3.4.5. Solubility of compound 1.57 in ........................................................water

 

 

199

3.4.6. Distribution of compound 1.57 ...............in the n-octanol – water system

199

3.4.7.

Study of

the

stability

of

aqueous solutions of

compound 1.57

by

NMR spectroscopy ..........................................................................................................

 

 

 

 

 

 

200

3.5. Biocompatibility of compound 1.57 ..............................................................

 

 

203

3.5.1. Haemocompatibility ...................................................................................

 

 

 

 

203

3.5.2. Study of binding to DNA and HSA............................................................

 

 

206

3.5.3. Antioxidant activity ....................................................................................

 

 

 

 

213

3.5.4. Genotoxicity of compound 1.57 .................................................................

 

 

219

 

146

 

3.5.5. Cytotoxicity of compound 1.57 ..................................................................

222

3.5.6. Mitochondrial potential ..............................................................................

223

3.6. Study of the physicochemical properties of aqueous solutions of

compound 3.6 ..................................................................................................................

224

3.6.1. Stability of compound 3.6 in aqueous solutions.........................................

224

3.7. Compound 3.6 biocompatibility study ..........................................................

224

3.7.1. Haemocompatibility study..........................................................................

224

3.7.2. Study of the binding of compound 3.6 to DNA and HSA .........................

227

3.7.3. Antiradical activity of compound 3.6 .........................................................

234

3.7.4. Compound 3.6 cytotoxicity ........................................................................

237

3.7.5. Effect of compound 3.6 on HIF-1α stabilisation ........................................

238

3.8. Biocompatibility of non-covalent conjugate based on GO

and

compound 1.57 ................................................................................................................

239

3.8.1. Haemocompatibility study..........................................................................

239

3.8.2. Antioxidant activity of GO-1.57 conjugate ................................................

242

3.8.3. Genotoxicity ...............................................................................................

245

3.8.4. Study of thermodynamic parameters of GO-1.57 binding to HSA by

calorimetric method .........................................................................................................

248

3.8.5. Cytotoxicity of the GO-1.57 conjugate ......................................................

248

3.8.6. Study of the mechanisms of endocytosis of the GO-1.57 conjugate..........

249

CHAPTER 4. EXPERIMENTAL PART ....................................................................................

251

4.1

Synthesis of 1,3,5-triazine derivatives ...............................................................

253

4.2

Synthesis of tetrazole derivatives ......................................................................

255

4.3

Synthesis of triazinyltetrazoles .......................................................................

257

4.4

Study of the stability of compounds 1.57 and 3.6 ..........................................

258

4.5

GO synthesis...................................................................................................

259

4.6

Synthesis of GO conjugate with 2,4,6-trisubstituted-1,3,5-triazine 1.57 .......

259

4.7

Biocompatibility study ...................................................................................

260

MAIN RESULTS AND CONCLUSIONS .................................................................................

269

BIBLIOGRAPHY .......................................................................................................................

270

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

147

LIST OF ABBREVIATIONS

DNA — Deoxyribonucleic acid

RNA — Ribonucleic acid

IC50 — Half maximal inhibition concentration DMF — N, N-Dimethylformamide

Glu 30 — Glutamic acid

HIV-1 — Human immunodeficiency virus

GO — Graphene oxide

HSA — Human serum albumin

PBS — Phosphate-buffered saline

THF — Tetrahydrofuran

148

INTRODUCTION

Relevance of the research topic

To date, drug anticancer therapy is represented by three areas: chemotherapy, targeted therapy and immunotherapy. Chemotherapy is a non-specific treatment that uses chemicals that inhibit cell proliferation by affecting cellular DNA, RNA, receptors, metabolism, and cytoskeletal components [1]. Due to the difficulty of obtaining targeted and immune drugs (this fact significantly increases their cost), chemotherapy is still a relevant approach, since cytostatics are low molecular weight chemicals that are much easier to synthesise. The main disadvantage of chemotherapy is the lack of specificity of cytostatics to tumour cells, which leads to the development of a wide range of toxic side effects, among which are increased fatigue, alopecia, aplastic anaemia and thrombocytopenia, immunodeficiency, neuropathy, development of skin ulcers, impaired cognitive and reproductive functions, diarrhoea, nausea, loss of appetite. It is worth noting the development of resistance to therapy, which necessitates the search for new chemicals with cytostatic properties.

Thus, the problem of the synthesis of new biologically active substances and the creation of new drugs on their basis for the treatment of oncological diseases is one of the most important tasks.

Purpose and tasks of the work

The aim of the work is to create new promising materials based on 1,3,5-triazines and tetrazoles, as well as graphene oxide to reduce systemic toxicity and regulate bioactivity.

To achieve this goal, the following tasks were set:

1)creation of new promising biologically active compounds of the 1,3,5-triazine series with antitumour activity;

2)synthesis of a nanoform of the leader compound with graphene oxide;

3)study of the physicochemical properties of the obtained compounds of the 1,3,5-triazine series;

4)in vitro testing of obtained compounds and conjugate.

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

149

Scientific novelty and practical significance

1.Synthesis of new heterocyclic compounds based on 1,3,5-triazine, including those containing both triazine and tetrazolyl fragments, has been carried out.

2.For the first time, a non-covalent conjugate containing graphene oxide enriched with oxygen-containing functional groups and a cytostatic preparation based on 1,3,5-triazine (the degree of loading of the cytostatic drug is 68 %) was synthesised and characterised.

3.A comprehensive study of the physicochemical properties of aqueous solutions of a cytostatic drug based on 1,3,5-triazine was carried out, including the study of stability, solubility, distribution coefficient, density, and viscosity.

4.The biocompatibility of the synthesised materials was studied: haemocompatibility, antioxidant properties, genotoxicity.

5.The cytotoxicity of the obtained compounds was studied on various cell lines.

Reliability and approbation of research results

The results were published in six papers in peer-reviewed scientific journals indexed in the Scopus and Web of Science databases and presented at six international and allRussian scientific conferences.

List of publications

Mikolaichuk O., Sharoyko V., Popova E., Protas A., Fonin A., et. al. Biocompatibility and bioactivity study of a cytostatic drug belonging to the group of alkylating agents of the triazine derivative class // J. Mol. Liq. – 2021. – Vol. 343. – P. 117630.

2.Mikolaichuk O., Popova E., Protas A., Rakipov I., Nerukh D., et. al. A cytostatic drug from the class of triazine derivatives: Its properties in aqueous solutions, cytotoxicity, and therapeutic activity // J. Mol. Liq. – 2022. – Vol. 356. – P. 119043.

3.Mikolaichuk O., Sharoyko V., Popova E., Protas A., Fonin A., et. al. Synthesis, study of interaction with DNA and antitumour activity of a new tetrazole-containing derivative of 2-amino-4,6-di(aziridin-1-yl)-1,3,5-triazine // Russian Chemical Bulletin. – 2022. – No.

5.– 1050.

4.Molchanov O., Maistrenko D., Granov D., Vasina L., Popova A., Vasilevskaya I.,

Mikolaichuk O., et. al. Biomarkers and potential targets for immune and cellular therapy in triple negative breast cancer // Cell Ther Transplant. – 2022. – Vol. 11(2). – P. 18.

150

5. Mikolaichuk O., Popova E., Protas A., Shemchuk O., Vasina L. Study of biocompatibility, cytotoxic activity in vitro of a tetrazole-containing derivative of 2-amino- 4,6-di(aziridin-1-yl)-1,3,5-triazine // Biochem Biophys Res Commun. // 2022. – Vol. 629.

– P. 176.

6. Sharoyko V., Mikolaichuk O., Shemchuk O., Abdelhalim A. O. E., Potanin A., et. al. Novel non-covalent conjugate based on graphene oxide and alkylating agent from 1,3,5- triazine class // J. Mol. Liq. – 2023. – Vol. 372. – P. 121203.

List of conferences

1. Proceedings of the 5th Russian Conference on Medicinal Chemistry with international participation ‘MedChem-Russia 2021’ October 5–8, 2021. O. V. Mikolaichuk, A. V. Protas, E. A. Popova, A. M. Malkova, V. A. Ostrovsky, A. A. Bogdanova, Yu. N. Pavlyukova, N. T. Shmanyova, Yu. A. Nashchekina, V. V. Sharoyko, K. N. Semenov

‘Derivatives of 5-phenyltetrazol-2-ylacetic acid as key reagents in the synthesis of biologically active substances exhibiting antitumour activity’, Volgograd, Russian Federation, 2021.

2.Proceedings of the XXIV International Medical and Biological Conference of Young Researchers ‘Fundamental Science and Clinical Medicine – Man and His Health’, April 2021. O. V. Mikolaichuk, A. V. Protas, G. O. Yuryev, K. N. Semenov ‘Study of the interaction of a 1,3,5-triazine derivative with DNA’, St. Petersburg, Russian Federation, 2021.

3.Materials of the LXXXII scientific and practical conference with international participation ‘Topical issues of experimental and clinical medicine — 2021’ April 24, 2021. O. V. Mikolaichuk, A. V. Protas, E. A. Popova ‘Synthesis and study of the properties of new hybrid heterocyclic systems based on 1,3,5-triazines’, St. Petersburg, Russian Federation, 2021.

4.Proceedings of the All-Russian Scientific Conference ‘Markovnikov Readings: Organic Chemistry from Markovnikov to the Present Day’ October 8–11, 2021. O. V. Mikolaichuk, A. V. Protas, E. A. Popova, A. A. Spiridonova, O. Ya. Volkova, A. M. Malkova, V. V. Sharoyko, K. N. Semenov ‘Synthesis, structure and biological activity of some 1,3,5- triazine derivatives’, Sochi, Russian Federation, 2021.

5.Proceedings of the All-Russian Congress ‘KOST-2021’ on the chemistry of heterocyclic compounds October 12–16, 2021. O. V. Mikolaichuk, A. V. Protas, E. A. Popova, A. A.

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/