Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
10.62 Mб
Скачать

Рис. 1.30. Влияние сильных нерегулярностей облучаемой поверхности на изодозовые распределения от электронных пучков [44]

7. Клиническое применение электронных пучков

7.1. Определение мишени

Так же как и в фотонной терапии первым шагом в электронной терапии является как можно более точное определение облучаемой мишени. Перед симуляцией и определением формы, размеров и расположения электронных полей необходимо установить все геометрические параметры планируемого объема облучения (PTV) и соответствующие ему границы. С этой целью детально анализируется вся доступная диагностическая, операционная и медицинская информация. Особенно полезными при решении этих вопросов, а также

51

при выборе энергии пучков и оптимальном их размещения являются данные компьютерной томографии (КТ).

7.2. Терапевтический диапазон – выбор энергии пучка

Как правило, терапевтическая глубина электронной терапии простирается до глубины 90 %-ной изодозовой кривой (D90). Поэтому, если нет опасности переоблучения критической структуры, расположенной сразу за PTV, энергия электронов выбирается так, чтобы 90 %-ная изодозовая линия охватывала наиболее удаленный район PTV и еще добавочные 5 мм за областью мишени. Оценочное значение глубины R90 в см можно определить, если энергию пучка в МэВ поделить на четыре.

В некоторых случаях при определении терапевтического диапазона электронов используется также 80 %-ный изодозовый уровень (D80). Так делается при облучении грудной клетки, где D80 расположен вблизи границы раздела грудной клетки с легкими. Тогда пучок не создает излишне высокой дозы в нижележащих тканях легких и сердца. Оценочное значение глубины R80 можно определить, если энергию пучка поделить на три.

7.3. Рекомендации Международной комиссии по радиационным единицам

7.3.1. Дозовое предписание – МКРЕ 71

Международная комиссия по радиационным единицам (ICRU или МКРЕ) опубликовала в 2004 году Доклад 71, детализирующий новые рекомендации «Предписание, регистрация и описание терапии пучками электронов» [45]. В этом документе предлагается для согласованности следовать такому же подходу к дозовым рекомендациям, какой был разработан ранее для фотонной терапии в Докладах 50 и 62 [46,47]. В докладе сохраняются понятия GTV (определяемый объем опухоли), CTV (клинический объем мишени), PTV (планируемый объем мишени), TV (облученный объем), органы риска (OAR) (см. часть 1 пособия [48]).

Авторы [45] указывают на необходимость полного описания курса облучения, включая примененную схему фракционирования, и не делая корректировку на разность в относительной биологической эффективности для фотонов и электронов. Особо в докладе отмечается

52

важность выбора ссылочной (опорной) точки, называемой «Ссылочная точка МКРЕ» (для краткости будем далее называть ее просто ссылочной точкой). В отечественной литературе ее часто называют точкой дозирования. Эта точка должна всегда выбираться в центре (или в центральной части) PTV и ясно указываться. Как правило, энергия пучка выбирается так, чтобы максимум глубинной дозовой кривой на оси пучка находился в центре PTV. Если пик дозы не попадает в центр PTV, ссылочная точка (точка дозирования) попрежнему выбирается в центре PTV, но при этом регистрируется (протоколируется) также величина максимальной дозы. Таким образом, для стандартных условий электронного облучения в Докладе 71 рекомендуется протоколировать следующие дозы:

максимальная поглощенная доза в воде;

местоположение и величину дозы в ссылочной точке (точке дозирования), если она расположена не пике поглощенной дозы;

максимальное и минимальное значения дозы в PTV и дозы в органах риска, определенные из дозовых распределений или гистограмм доза-объем.

Для небольших пучков и пучков нерегулярной формы рекомендуется протоколировать также пиковое значение поглощенной дозы для ссылочных (референсных) условий. В случаях, когда применяется коррекция на косое падение и негомогенности, рекомендуется эти операции также регистрировать.

7.3.2. Рекомендации МКРЕ 71 при интраоперационной лучевой терапии

Доклад 71 содержит также рекомендации относительно специальных электронных пучков, применяемых в интраоперационной лучевой терапии (ИОЛТ) и в методе тотального облучения кожи. В ИОЛТ электронный пучок используется для однократного облучения хорошо определенной мишени после хирургического вмешательства. При этом для более точного определении СTV в процессе операции участвуют и хирург, и радиационный онколог.

Необходимо протоколирование всех специфичных для ИОЛТ устройств, включая тип, форму, угол наклона поверхности тубуса и размер аппликатора. Ссылочная точка всегда выбирается в центре или в центральной части PTV, и по возможности в максимуме дозы на центральной оси. В соответствии со специальными рекомендациями

53

МКРЕ для ИОЛТ, опубликованными в работе [45], следует протоколировать и публиковать следующие дозовые величины:

пик поглощенной дозы в воде в ссылочных (референсных) условиях для каждого пучка, если ось пучка нормальна к поверхности ткани;

для наклонных пучков максимальное значение поглощенной дозы

вводе на «клинической оси» (т.е. оси, нормальной к поверхности ткани и проходящей через точку пересечения центральной оси пучка и поверхности ткани);

положение и значение дозы в ссылочной точке (точке дозирования), если она отлична от выше указанных;

максимальное и минимальное значения дозы в PTV (обычно условия облучения выбираются так, чтобы обеспечить во всем PTV не менее 90 % от дозы в ссылочной точке).

7.3.3. Рекомендации МКРЕ 71 при тотальном облучении кожи

При тотальном облучении кожи (ТОК) необходимо добиваться однородного распределения дозы по всей поверхности кожи. Для пациентов с неглубокой поверхностной локализацией болезни может использоваться одна энергия электронов. В других клинических ситуациях толщина повреждаемой области может изменяться в зависимости от стадии, патологии и локализации на поверхности тела. В таких случаях идентифицируются несколько CTV и соответственно несколько облучаемых глубин. Для каждой анатомической области выбирается ссылочная точка (точка дозирования) вблизи или в центре PTV/CTV. Клинически значимая ссылочная точка, расположенная внутри определенного PTV, может быть выбрана для всего PTV. При проведении ТОК рекомендуется протоколировать и публиковать следующие дозовые величины:

пик поглощенной дозы в воде для каждого пучка;

положение и значение дозы в ссылочной точке дозы (точке дозирования) для каждой анатомической области;

минимальное и максимальное значениев каждой анатомической области;

положение и поглощенную дозу в ссылочной точке дозы (точке дозирования) для полного PTV и значение минимальной и максимальной дозы для всего PTV.

54

7.4. Модификация формы поля и дозового распределения от электронных пучков

7.4.1.Создание специальной формы поля

Вэлектронной терапии нередко требуются поля нестандартной формы. Система фотонных коллиматоров обычно не применяется для этих целей, так как она, учитывая специфику взаимодействия электронов, расположена достаточно далеко от пациента. После прохождения рассеивающей фольги электронный пучок испытывает добавочное рассеяние на других элементах конструкции головки и в воздухе между выходным окном и пациентом, что приводит к слишком размытой зоне полутени. Поэтому для создания электронных полей заданной формы почти всегда применяются навесные аппликаторы в виде тубусов, которые при необходимости дополняются защитными блоками или защитными фигурными пластинами. Будем называть последние плоскими аппликаторами.

Электронные тубусы прикрепляются к головке ускорителя таким образом, чтобы конец конуса находился на расстоянии не больше, чем 5 см от пациента, где, соответственно, определяется и размер поля. Стандартный набор тубусов-аппликаторов обеспечивает размеры полей

винтервале от 5 × 5 см2 до 25 × 25 см2. Более сложная конфигурация полей создается с помощью добавочных свинцовых или церробендовых плоских аппликаторов. Иногда (при низких энергиях электронов) применяются пластины из пластика.

Таблица 1.6

Толщина свинца (мм), требуемая для обеспечения различных значений коэффициентов пропускания для поля электронов 12,5 x 12,5 см2 разных энергий

Энергия пучка,

6

8

10

12

14

17

20

МэВ

1,2

 

 

 

 

 

 

50%

1,8

2,2

2,6

2,9

3,8

4,4

10%

2,1

2,8

3,5

4,1

5,0

7,0

9,0

5%

3,0

3,7

4,5

5,6

7,0

8,0

10,0

Для определения толщины свинцовых аппликаторов, ослабляющих дозу до значения <5% от начальной, можно воспользоваться простым правилом: толщина равняется одной десятой практического пробега Rp.

55

В табл. 1.6 приводятся толщины пластин из свинца с коэффициентами пропускания 50, 10 и 5 % для пучков с разными энергиями.

Плоские аппликаторы могут размещаться непосредственно на теле пациентов. В этом случае создается поле с резкими краями. Однако, если пластины имеют значительный вес, то их также как и защитные блоки закрепляют на головке ускорителя. В этом случае получаются несколько иные изодозовые распределения (рис.1.31)

Рис. 1.31. Сравнение изодозовых распределений при разном расположении коллиматора: (а) – коллимационная пластина удалена на 10 см от кожи пациента; (б) – коллимационная пластина размещена непосредственно на коже пациента [49]

Рис. 1.32. Зависимость отношения выходных факторов на глубине zmax для открытого и блокированного полей (входной фактор блокированного поля обратно пропорционален этому отношению) от энергии пучка электронов при разной степени блокировки [50]

56

7.4.2. Влияние блокирования на фактор выхода

Частичное экранирование поля приводит к уменьшению мощности дозы и, следовательно, к уменьшению фактора выхода (ФВ). Экранирование также влияет и на дозовые распределения. Величина таких изменений зависит от степени экранирования, толщины блоков и энергии электронов. Данные на рис.1.32 иллюстрируют эту особенность блокирования. Из рисунка видно, что уменьшение ФВ наиболее значимо для небольших полей, и когда в оставшейся открытой части поля в силу ее малости нарушается поперечное электронное равновесие. На рис.1.33 показан этот эффект в зависимости от размера открытой части поля. Отметим, что степень уменьшения дозы при экранировании зависит также от глубины точки измерения.

Рис. 1.33. Зависимость отношения доз в центрах экранированного и открытого полей на глубине zmax от размера открытой части поля [51]

В электронной терапии поля нерегулярной формы встречаются достаточно часто. Если один из поперечных размеров поля оказывается при этом меньше практического пробега электронов Rp, то необходимо иметь в виду отмеченную выше закономерность. В работе [52] предлагается простое правило для определения минимального диаметра поля в воде, начиная с которого наступает электронное

57

равновесие: диаметр поля (см) равен энергии пучка (МэВ), деленной на

2,5.

7.4.3. Внутренняя защита

При облучении некоторых видов опухоли для защиты нижележащих радиочувствительных структур целесообразно применение “внутренней защиты”. Под этим термином подразумевается помещение защитных экранов в полости, расположенные за облучаемой мишенью. К таким случаям относятся облучения опухолей губы, глазных век, слизистой оболочки щеки и др. Внутреннюю защиту применяют также при интраоперационном облучении. Для изготовления внутренней защиты обычно применяют свинцовые пластины. Требуемая толщина свинца зависит от средней энергии электронного пучка в месте предполагаемого размещения защиты. Для оценки толщины экрана можно принять, что средние потери энергии электроном в мягкой ткани равны 2 МэВ/см, а в свинце 2 МэВ/мм.

Вместе с тем необходимо учитывать не только уменьшение дозы за внутренней свинцовой защитой, но и увеличение дозы в слоях ткани, расположенных перед защитой. Это увеличение обусловлено тем, что свинец имеет значительно больший коэффициент обратного рассеяния, чем ткань или вода. К чему это может привести, наглядно иллюстрирует рис.1.34. Там показано, как кардинально изменяется дозовое распределение, создаваемое электронным пучком в полистироле, если на пути пучка на разных глубинах помещается свинцовая пластина.

Степень увеличения дозы на границе ткани и металла зависит от энергии пучка вблизи поверхности и атомного номера металла. Для границы раздела между тканью и свинцом поправочный фактор на увеличение дозы (EBF) можно рассчитать по следующей эмпирической формуле:

EBF =1+ 0,735 exp(0,052

 

z ),

(1.28)

E

где Ez – средняя энергия электронов вблизи границы раздела.

С целью уменьшения возможного негативного последствия увеличения дозы перед свинцовой защитой применяется покрытие свинца дополнительным слоем материала с низким атомным номером, например, алюминием, воском, пластиком и др.

58

Рис. 1.34. Влияние на глубинное дозовое распределение, создаваемое 10 МэВ электронным пучком в воде, свинцовой пластины толщиной 1,7 мм, которая располагается на разных глубинах на пути пучка[51]

7.4.4. Болюс

Болюсом в лучевой терапии называют некоторый объем тканеэквивалентного материала, размещаемый непосредственно на облучаемой поверхности тела пациента вплотную к ней. Прилегающая к телу поверхность болюса повторяет форму тела. Наружная поверхность болюса обычно делается плоской и располагается нормально к геометрической оси пучка. Раньше болюсы изготовлялись из парафина или воска методом плавления, в последние годы их чаще изготавливают на специальных копировальных автоматах из специальных материалов типа плотного пенопласта, а также из слоев термопластика. Последний материал особенно удобен тем, что он прозрачный, поэтому под ним остаются видными все кожные метки.

Использование болюсов в электронной терапии преследует следующие цели: а) превращение нерегулярной облучаемой поверхности пациента в плоскую; б) уменьшение проникновения электронов в некоторые части поля; в) увеличение поверхностной дозы; г) улучшение объемного дозового распределения для получения

59

большей конформности с объемом мишени и уменьшения облучения критических органов.

Рис. 1.35. Изодозовое распределение для двух смежных полей электронов при разных промежутках между краями полей на поверхности [22]

60