Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛР МиКЭС 2020 / Лаб. раб. №4 по МиКЭС.doc
Скачиваний:
59
Добавлен:
21.01.2021
Размер:
1.37 Mб
Скачать

2.4.2 Сопротивление потерь в катушке

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь .

Выбор марки и, главное, диаметра провода обмотки катушки силь­но влияет на значение сопротивления потерь, следовательно, и добротности. При проектировании высокочастотных катушек стремятся добиться наивысшего значения добротности при заданных габаритах.

На рисунке 4 изображена упрощенная схему замещения катушки.

Рисунок 4 - Простая схема замещения реальной катушки индуктивности

На этой схеме сопротивление последовательных потерь в общем случае представляет собой сумму сопротивлений потерь в меди провода намотки , в собственной емкости катушки , в сердечнике катушки и в экране , т.е. .

В первом приближении можно полагать, что величина сопротивления потерь в катушке без сердечника и экрана равна сопротивлению провода катушки току высокой частоты, т.е. .

На низких частотах активное сопротивление катушки индуктивности можно считать равным сопротивлению провода ее обмотки на постоянном токе. С переходом на более высокие частоты начинает проявляться поверхностный эффект и активное сопротивление катушки возрастает. Кроме того, при сворачивании провода в спираль, т.е. при его намотке на катушку, магнитное поле проводника искажается вследствие появления магнитной связи между отдельными витками, и оно оказывается несимметричным относительно сечения провода. Это, в свою очередь, приводит к неравномерному распределению тока по периметру сечения проводника: внутри витка плотность тока будет выше. Смещение тока высокой частоты к оси обмотки катушки носит название эффекта близости. Его влияние также уве­личивает активное сопротивление катушки.

Как известно, поверхностный эффект заключается в вытеснении высокочастотного тока на поверхность провода за счет внутреннего электромагнитного экранирования вихревыми токами. В результате плотность тока в глубине провода уменьшается, поэтому умень­ша­ется и эффективное сечение проводника , как это показано на рисунке 5.

Рисунок 5 - Распределение токов в сечении проводника на высокой частоте

Другой причиной увеличения сопротивления провода намотки является эффект близости, наблюдающийся в проводнике, свернутом в спираль. При этом плотность линий магнитного поля, пересекаю­щих проводник с внутренней и наружной стороны, различна. В результате высокочастотный ток смещается к внутренним частям провода намотки (рисунок 6).

Рисунок 6 - К возникновению эффекта близости

,

Приведенные выше фор­мулы указывают на сложную зависимость между сопротивлением провода катушки и его диаметром, так как при этом изменяется проявление поверхностного эффекта и эффекта близости. Рассмотрим вопрос о влиянии диаметра провода на сопротивление катушки.

Увеличение диаметра прямолинейного провода и, соответственно, рост его периметра ведут к уменьшению сопротивления провода току высокой частоты. Зависимость сопротивления rпэ отрезка прямолинейного провода от диаметра dпр.м при некоторой фиксированной частоте представлена соответствующей кривой на рисунке 7.

При свертывании провода в спираль возникает эффект близости, который проявляется тем сильнее, чем больше диаметр провода. Увеличение сопротивления за счет эффекта близости пропорционально диаметру провода и изображается на рисунке 7 прямой, обозначенной rбл. Сложив величины, характеризуемые кривыми rпэ и rбл, получим изменение полного активного сопротивления провода катушки в зависимости от его диаметра; эта зависимость выражается кривой rм. Ход зависимости rм = f(dпрм) показывает, что при определенном диаметре провода dопт сопротивление катушки имеет минимальное значение.

Диаметр провода dопт, при котором сопротивление катушки току высокой частоты минимально, называется оптимальным диаметром провода высокочастотной катушки.

Рисунок 7 - Идентификация оптимального диаметра провода

Изменение диаметра провода в ту или иную сторону от оптимального значения ведет к увеличению сопротивления катушки. При меньших диаметрах провода преобладает влияние поверхностного эффекта, при больших диаметрах – эффекта близости.

Для употребительных размеров однослойных катушек оптимальный диаметр провода лежит в пределах от 0,2 до 0,6 мм, а для многослойных катушек – от 0,08 до 0,2 мм.

Диэлектрические потери возни­кают в поле собственной емкости катушки через диэлектрик и зависят от величины этой емкости, от качества ( ) мате­риала каркаса и от частоты . Образование собственной емкости катушки через диэлектрик и через воздух показано на рисунке 8.

Рисунок 8

Практически диэлектрические потери проявляются лишь в катушках большого диаметра, имеющих большую собственную емкость, и каркасы из низкокачественных диэлектриков — кар­тона, бакелита и т. п., а на УКВ — из пирофилита и радиофар­фора. В катушках малого размера с каркасами из ультрафар­фора или полистирола диэлектрические потери получаются ничтожно малыми.

В многослойных катушках наблюдается концентрация элек­трического поля внутри обмотки, поэтому диэлектрические по­тери в изоляции провода обычно превышают потери в каркасе.

Потери из-за влияния собственной емкости проявляются на частотах, близких к собственной частоте катушки . Под влиянием соб­ственной емкости происходит значительное изменение дейст­вующей индуктивности и действующего сопротивления катушки, сопровождающееся падением ее добротности

Практически при > 3 изменением добротности из-за влия­ния собственной емкости можно пренебречь. В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы. Присутствие экрана вызывает изменение сопротивления ка­тушки, так как экран вносит в обмотку катушки некоторое сопротив­ление и уменьшает эффект близости

.

Экран представляет собой одновитковую диаметром короткозамкнутую катушку,

Чем ближе к катушке расположен экран, тем большее сопротивление вносится в обмотку, уменьшая добротность экранированной катушки.

Уменьшить влияние экрана можно, надев на катушку цилиндр из магнитодиэлектрика или феррита. Такое расположение ослабляет наружное магнитное поле катушки и ее связь с экраном, что обычно и делается для уменьшения наружных размеров экранированной катушки.

Для снижения вносимого сопротивления следует изготавливать электромагнитные экраны из немагнитных хорошо проводящих электрический ток проводниковых материалов – алюминия, меди или латуни. При этом экран выполняется в виде круглого или прямоугольного стакана, закрепляемого на каркасе катушки.

Общие потери в магнитных материалах оценивают тангенсом угла потерь , т. е. затуханием, вносимым кольце­вым сердечником в эталонную катушку

,

где — вносимое сопротивление; - угол, допол­няющим до 90° угол между током и напряжением в катушке;

- угловая частота;

- индуктивность катушки на кольцевом сердечнике при начальной магнитной проницаемости материала .

Коэффициент использования магнитных свойств материала кольце­вого сердечника близок к единице, так как практически все магнитное поле такой катушки находится в пределах тела сердечника. В других сердечниках часть магнитного поля может находится вне тела сердечника в воздухе или других элементах конструкции катушки, изготовленных из материала с магнитной проницаемостью, отличной (обычно существенно меньшей) от аналогичной для сердечника.

Согласно закону Ома для магнитной цепи это приводит к снижению величин магнитного потока и индукции магнитного поля, и как следствие этого, снижению использования магнитных свойств сердечника. При этом уменьшается индуктивность катушки, но и уменьшаются потери, вносимые в обмотку со стороны сердечника согласно выражению

.

- индуктивность катушки на сердечнике при магнитной проницаемости сердечника .

Сопротивление катушек с замкнутым сердечником ста­новится минимальной при вполне определенной его проницаемости.

При очень большой магнитной проницаемости сердечника потери, вносимые сердечником будут наибольшие, а потери в проводе обмотки вследствие малого числа витков и длины провода обмотки будут минимальными. При уменьшении магнитной проницаемости сердечника потери, вносимые сердечником будут уменьшаться, а потери в проводе обмотки вследствие увеличения числа витков и длины провода обмотки будут увеличиваться, как показано на рисунке 9.

Общее сопротивление катушки, равное , при будет минимальным.

Величину сопротивления потерь как параметр катушки для сравнения между собой различных катушек обычно не используют. Ею пользуются лишь для теплового расчета катушек индуктивности в выходных каскадах мощных радиопередатчиков.

Рисунок 9 - Влияние магнитной проницаемости сердечника на сопротивление катушки