Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Типовые вопросы на экзамен по Цитологии.docx
Скачиваний:
41
Добавлен:
20.06.2021
Размер:
131.6 Кб
Скачать
  1. Фотосинтез. Биологическая роль фотосинтеза.

Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.

Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл.

Помимо запаса энергии и питания почти всего живого на Земле, фотосинтез важен и по другим причинам.

В процессе фотосинтеза выделяется кислород. Кислород необходим для процесса дыхания. При дыхания происходит обратных фотосинтезу процесс. Органические вещества окисляются, разрушаются и выделяется энергия, которую можно использовать на различные процессы жизнедеятельности (ходить, думать, расти и т. д.). Когда на Земле еще не было растений, то в воздухе кислорода почти не было. Примитивные живые организмы, обитавшие в те времена, окисляли органические вещества другими способами, не с помощью кислорода. Это было не эффективно. Благодаря кислородному дыханию живой мир получил возможность широкого и сложного развития. А кислород в атмосфере появился благодаря растениям и процессу фотосинтеза.

В стратосфере кислород под действием солнечного излучения превращается в озон. Озон защищает живое на Земле от опасного ультрафиолетового солнечного излучения. Без озонового слоя жизнь не могла бы в процессе эволюции выйти из моря на сушу.

В процессе фотосинтеза из атмосферы поглощается углекислый газ. Углекислый газ выделяется в процессе дыхания. Если бы он не поглощался, то накапливался бы в атмосфере и влиял наряду с другими газами на увеличение так называемого парникового эффекта. Парниковый эффект заключается в повышении температуры в нижних слоях атмосферы. При этом может начать меняться климат, начнут таять ледники, уровень океанов поднимется, в результате чего могут быть затоплены прибрежные земли и возникнут другие негативные последствия.

Во все органические вещества входит химический элемент углерод. Именно растения связывают его в органические вещества (глюкозу), получая из неорганических (углекислого газа). И делают они это в процессе фотосинтеза. В дальнейшем, «путешествуя» по пищевым цепям, углерод переходит из одних органических соединений в другие. В конечном итоге, при гибели организмов и их разложении, углерод снова переходит в неорганические вещества.

Для человечества фотосинтез также имеет важное значение. Уголь, торф, нефть, природный газ — это остатки растений и других живых организмов, накопившиеся за сотни миллионов лет. Они служат источником дополнительной энергии, что позволяет цивилизации развиваться.

  1. Клетка – основная форма организации живой материи. Клеточная теория.

Существует 2 гипотезы появления эукариотических клеток: 1) инвагинационная (впячивание) – в предковой клетке прокариот появляется впячивание мембраны и образуются первичные органоиды; она объясняет появление двух мембранных структур (ядро, пластиды, митохондрии). 2) симбиотическая – клеткой-хозяином был прокариот анаэроб, который способен к амебовидному движению. Переход к анаэробному дыханию связан с проникновением аэробапрокариота в клетку-хозяина и существования в виде митохондрий. У растений появляются хлоропласты, где симбионтами послужили сине-зеленые водоросли. Основной довод в пользе этой гипотезы, в том, что митохондрии и хлоропласты им собственную ДНК. Генетический материал ядра мог образоваться из ДНК симбионтов прокариот, т.о. за 1 млрд л эволюции эукариот, появилось все многообразие живых организмов от простейших до человека.

Клетка эукариота включает 3 составные части: 1) поверхностный аппарат – включает 3 части: а) надмембранный компонент – не живой продукт жизнедеятельности клетки, отличается у разных царств (хитин, целлюлоза, гликокалекс); б) подмембранный – (кортикальный) включает фибриллярные структуры, микротрубочки микрофиламенты, которые способствуют поддержанию формы клетки. Функции: осуществляет передачу информации глубинным структурам клетки; способствует изменению конфигурации плазмолеммы. в) плазмолемма (ЦПМ) – способна к самозамыканию; пластичность, избирательная проницаемость. Функции: опорная, рецепторная, регуляторная, стабилизирующая, транспортная. Имеет 3 слоя: 2 белковых расположенных рыхло снаружи, 1 – внутри липиднобималекулярный.

2) цитоплазма состоит из: гиалоплазмы, органоидов, включений. Гиалоплазма – основное вещество цитоплазмы, заполняющее пространство между клеточными органеллами, внутренняя среда обеспечивает связь всех органоидов. 90% - вода, 10% - белки, аминокислоты, нуклеотиды, ионы и др. в-ва. Содержит множество белковых нитей – филоментов (пронизывают цитоплазму, образуя цитоскелет). Органоиды – постоянные компоненты клетки, расположенные в цитоплазме, имеют определенную структуру и выполняют определенные функции. По назначению делят на: общие (во всех клетках) и специальные (присуще небольшим группам клеток). По строению на: мембранные (рибосомы, микротрубочки, микрофиломенты) и немембраные (ЭПС, КГ, лизосомы). Включения – непостоянные компоненты, продукты жизнедеятельности клетки, неживые, не выполняющие активных функций, синтезируются в клетке, используются в процессе обмена.

3) ядро – наиважнейший компонент всех эукариотических клеток (кроме эритроцитов), иногда встречаются многоядерные. Оно необходимо для жизни клетки, основное свойство: большие компенсаторные способности и возможности. Функции: хранение и реализация ген-ой инф-ии, центр управления обменом в-тв, регулирует активность кл.