Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебники 60277.doc
Скачиваний:
22
Добавлен:
01.05.2022
Размер:
7.5 Mб
Скачать

2.4.2 Резисторный каскад

2.4.2.1. Применение, принципиальные и эквивалентные схемы

Как указывалось ранее, вследствие простоты, де­шевизны, малых габаритных размеров и массы и хороших частот­ных и переходных характеристик резисторный каскад является ос­новным типом каскада предварительного усиления как в транзи­сторных, так и в ламповых усилительных устройствах..

На рис. 2.5.1 приведены принципиальные схемы резисторных усилительных каскадов предварительного усиления с биполярным транзистором и с полевым транзистором, работающих на такие же следующие каскады;

Рис. 2.4.1. Резисторные промежуточные каскады предварительного усиления с резисторными входными цепями:

а — с биполярным транзистором; б — c полевым транзистором

сплошными линиями изображены те детали и цепи, которые определяют свойства каскада. Так как вспомо­гательные цепи, имеющиеся на схемах рис. 2.4.1 (цепочки фильтров СфRф, цепочки катодного смещения СкRк, эмиттерной стабилиза­ции СэRэ и т. д.), не обязательны для резисторного каскада и мо­гут в нем отсутствовать, то анализ свойств каскада можно уп­ростить и проводить без учета влияния этих цепей. Для этого до­статочно предположить, что емкости блокировочных конденсато­ров этих цепей Сф, Ск, Сэ бесконечно велики и их сопротивления для частот сигнала равны нулю, тогда резисторы Rк,Rк,, Rэ окажутся для переменного тока накоротко замкнутыми и не войдут в эквивалентную схему каскада. При выполнении этих условий эквивалентные схемы каскадов, изображенных на рис. 2.4.1, составленные из эквивалент­ной схемы выходной цепи усилительного элемента рассматрива­емого каскада, схемы .межкаскадной связи и эквивалентной схемы входной цепи усилительного элемента следующего каскада, примут вид, показанный на рис. 2.4.2.

Изображенная на эквивалентных схемах емкость См, (подклю­ченная параллельно нагрузке, представляет собой емкость мон­тажа каскада, образуемую емкостью монтажных проводников и деталей схемы относительно шасси усилителя или общего прово­да. Емкость монтажа зависит от геометрических размеров и конструкции усилительных элементов и деталей, а также от их расположения. У каскадов с впаянными в схему транзисторами при миниатюрных деталях и правильном их расположении См=3..4 пФ.

Рис. 2.4.2. Эквивалентные схемы резисторных каскадов предварительного усиления, изображенных на рис. 2.5.1:

а - с биполярным транзистором; б - с полевым транзистором

Так как емкость конденсатора межкаскадной связи С резисторного каскада обычно на несколько порядков больше паразит­ных емкостей, включенных между верхним и нижним проводни­ками эквивалентных схем рис. 2.4.2, то все имеющиеся между верхним и нижним проводниками емкости без заметной погреш­ности можно заменить их суммой:

С0выхмвх.э.сл . (2.4.1)

Схему рис. 2.4.2а можно еще упростить, заменив параллельно включенные сопротивления делителя смещения одним сопротивлением Rдел=Rд1слRд2сл/(Rд1сл+Rд2сл). После этого рассматривае­мые эквивалентные схемы резистор­ных каскадов предварительного усиления (см.рис. 2.4.2); можно представить в обобщенном виде, изображенном на рис. 2.4.3.

Здесь Ег представляет собой ЭДС генераторам сигнала, равную Uп или Uвх; Rг — внутреннее сопротивление генератора сигнала, равное Rк.б или Ri в соответствии с обозначениями рис. 2.4.2. Сопо­ставляя схемы рис. 2.4.3 а и б, видим, что эквивалентная схема с биполярным транзистором отличается от схемы с полевым транзистором лишь тем, что содержит дополнительно сопротивления rб.сл и rб.э.сл, сумма ко­торых представляет собой активную составляющую входного со­противления транзистора следующего каскада.

Для получения более наглядных физических представлений о резисторном каскаде рассмотрим его свойства подробнее.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]