Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебники и пособия / Кочетова Э. Ф. Инженерная геодезия.docx
Скачиваний:
56
Добавлен:
30.05.2022
Размер:
10.7 Mб
Скачать

8.3.2. Физические дальномеры

По области применения светодальномеры бывают (по ГОСТ 23543-88):

а) СГ – светодальномеры геодезические для измерения длин линий в государственных геодезических сетях, дальность действия до 50 км, точность 6÷110 мм. Марки СГ-50 (10, 20, 50 км), СГ-20, СГ-10;

б) СТ – светодальномеры топографические, применяемые для измерений в геодезических сетях сгущения и для выполнения топографических съемок, дальность действия до 15 км, точность 5÷80 мм. Выпускаются СТ-15, СТ-10, СТ-5;

в) СП – светодальномеры, применяемые для измерений длин линий при решении задач прикладной геодезии и маркшейдерии, дальность действия до 3 км, точность 0,3÷11 мм.

Радиодальномеры:

«Луч» – дальность действия 50 км, точность измерений ±15 см, масса 21 кг, 60 Вт,12 В.

D = ;

L = АВ = К·n + с.

Рис. 47. Теория нитяного дальномера: визирный луч перпендикулярен базису

Рис.48. Теория нитяного дальномера: визирный луч

не перпендикулярен базису

«Волна» - дальность действия 15 км, точность измерений ±3 см, масса 10 кг, 10 Вт, 12 В.

«Трап» - дальность действия 15 км, точность измерений ±3 см, масса <10 кг, 10 Вт, 12 В.

Светодальномеры и радиодальномеры различают по принципу действия:

а) Импульсные

отражатель

светодальномер

А В

Рис. 49. Принцип измерения длины линии светодальномерами

Длину линии вычисляют следующим образом:

АВ= где с – скорость распространения электромагнитной волны; t – время. Если средняя квадратическая ошибка времени mt=1·10-6сек., то средняя квадратическая ошибка измерения длины линии mАВ≈300 м.

б) Фазовые

Длина линии равна: АВ=N ∆φ измеряют фазометром; N – количество полуволн.

в) Частотные

Принцип работы светодальномеров базируется на определении времени τ распределения электромагнитных волн видимого или инфракрасного излучения вдоль измеряемого расстояния 13 (рис. 51,а), на одном конце которого установлен приемо-передатчик ПР-ПЕР, а на другом – светоотражатель ОТР. Поскольку световые сигналы проходят двойное расстояние 2D , то

D =с ∙τ/2n,

где с – скорость распространения световых волн в вакууме, равная 299792456 м/сек; n – показатель преломления воздушной среды, зависящий от ее температуры, плотности и влажности.

Определение времени прохождения электромагнитными волнами измеряемого расстояния производится импульсным и фазовым методами (или их комбинацией).

В импульсных светодальномерах (рис. 51, б) счет времени ведется в первом варианте непосредственным измерением интервала между высланным на дистанцию импульсом и принятым отраженным импульсом. Точность измерения времени 1-10 нс., а ошибка в измеренном расстоянии достигает 10 м.

Повышение точности достигнуто во втором варианте – импульсный метод с преобразованием временного интервала (счетно-импульсный метод). Сущность метода состоит в том (рис. 51, б низ), что промежуток времени между импульсами, соответствующий расстоянию 2D, преобразуется в непрерывный прямоугольный импульс, длительностью τ. Полученный прямоугольный импульс заполняется с помощью генератора счетными импульсами высокой частоты и малого периода Тс, которые поступают на специальный счетчик импульсов. Таким образом, время распространения сигнала в прямом и обратном направлениях будет равно:

τ=Тс ∙n,

где n – число счетных импульсов генератора, полученное со счетчика импульсов.

В фазовых светодальномерах вместо индикатора времени применен индикатор разности фаз. Существует два типа фазовых светодальномеров: с фиксированной (рис. 51в) и с плавно изменяющейся частотой (рис. 51г). В первом типе дальномеров имеющееся в приборе фазоизмерительное устройство измеряет разность фаз Δφ=(φ21) для высланного на дистанцию (φ1) и принятого с дистанции (φ2) сигналов. Эта разность фаз соответствует домеру к измеряемому расстоянию ΔD =λ∙Δφº/360º, а измеряемое расстояние будет:

D =(λ/2)∙(N+Δφº/360º),

где N – целое число волн, уложившихся в 2D; λ – длина волны.

Во втором типе фазовых светодальномеров частоту модуляции плавно изменяют до тех пор, пока в двойном расстоянии от приемопередатчика до отражателя не уложится целое число N волн или полуволн. Тогда:

D=λ∙N/2.

Для определения числа N измерения ведут на нескольких частотах.

В настоящее время выпускают ручные фазовые дальномеры (лазерные рулетки). Лазерный дальномер (рис. 50) позволяет измерять расстояния от 0,05 до 80 м (без отражателя) и более с максимальной погрешностью в ≈ 1,5 мм. Встроенная память на 19 измерений, помимо функций Пифагора (вычисления высоты, ширины), расчета неприступных отрезков, площади, объема, сложения, вычитания, значительно расширяют возможности лазерной рулетки при выполнении математических операций. Появляется возможность измерять наклоны в пределах ±60°, вычислять горизонтальное расстояние по датчику наклона, рассчитывать углы стыка стен, выносить в натуру проектные размеры. Время работы до 25 000 измерений.

Дальномер оборудован резьбой для установки на штатив и может вести отсчет от задней и передней поверхности дальномера. Многофункциональная откидная скоба на торце прибора позволяет производить измерения из внутренних углов, щелей и от различных краев и уступов. Положение откидной скобы прибор автоматически отслеживает и задает соответствующие поправки к результатам замера, это позволяет избежать ошибок при замерах. Автоматический датчик освещения дальномера включает подсветку дисплея и кнопки «DIST» в условиях плохой освещенности.

Рис. 50. Лазерный дальномер VEGA DM-180

Рис. 51. Принцип действия импульсных и фазовых дальномеров