Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Другие файлы / ШПОРЫ / Экология ландшафтов. Шпоры.docx
Скачиваний:
131
Добавлен:
01.05.2023
Размер:
303.58 Кб
Скачать

12. Понятия влагооборота. Общая схема влагооборота в ландшафте.

Под влагооборотом понимается совокупность процессов превращения, перемещения и изменения количества влаги в природно-территориальном комплексе.

С влагооборотом тесно связан водный баланс территории. Еще в 1884 г. А.И.Воейков рассчитал водный баланс Каспийского моря по формуле: И=О+С, где И – испарение, О – осадки, С – сток.

Коллектив авторов под руководством М.И.Львовича (1969) предложил так называемый комплексный метод изучения водного баланса. Он состоит из следующих уравнений:

P = S + U + E; W = P − S = U + E, где

P – осадки, S – поверхностный сток; U – подземный сток; E – суммарное испарение; W – валовое увлажнение территории.

К.Н.Дьяконов (1991) приводит более детальное уравнение водного баланса, интеграционного механизма геосистем с горизонтальными связями

X1+X2+r=Sb+Sn+U+E+T+Bx±g±W

Z=Sb+Sn+U ,

где X1 – атмосферные осадки в жидкой фазе; X2 – атмосферные осадки в твердой фазе (снег); r – роса; Sb – поверхностный весенний сток; Sn – внутрипочвенный сток; U – подземный сток; Z – суммарный русловой сток или интегральный сток для замыкающего створа геосистемы; E – физическое испарение; T – транспирация; Bx – аккумуляция влаги в годовом приросте биомассы; W – изменение влагозапасов в почве за некоторый интервал времени; g – фильтрационный поток воды из геосистемы и поток глубинных напорных вод в геосистему; Размерность членов уравнения кг/схм2, мм/год, м3/год, л/схкм2.

В различных геосистемах влагооборот может существенно отличаться. Так, А.А.Роде (1965) выделяет три основных типа водного режима почв. Промывной тип – характерен для областей, где сумма годовых осадков превышает испаряемость. В этих условиях геосистема подвергается сплошному промачиванию и нисходящее движение влаги в почве и горных породах преобладает над восходящим. Просачивающаяся вода достигает уровня грунтовых вод. Непромывной тип – характерен для областей с испаряемостью большей, чем осадки. В ПТК наблюдается дефицит влажности и почва промачивается лишь на некоторую глубину. Просачивающаяся влага не достигает уровня грунтовых вод. Влага, поступившая в ПТК, возвращается в атмосферу путем испарения и десукции и последующей транспирации. Выпотной тип – формируется в засушливом климате при близком уровне залегания грунтовых вод, из которых корни растений отсасывают влагу (десукция), при этом грунтовые воды как бы «отпотевают» через растения в атмосферу.

Влагооборот изучался многими экологами (П.Давинью и М.Танг, 1968; Ю.Одум, 1975 и др.). В.Лархер (1978) приводит интересную схему водного баланса дубового леса в облиственном и зимнем безлистном состоянии. В среднем за год выпадает 965, 9 мм осадков из которых 52,5 % вновь возвращается в атмосферу вследствие испарения воды, перехваченной растениями, транспирации и испарения почвы, 47 % просачивается, остаток накапливается в приросте биомассы.

Рассмотрим общую схему влагооборота в ландшафте. Основу влагооборота образуют твердые и жидкие атмосферные осадки, поступающие к верхней границе геосистемы. В геосистеме происходит их трансформация или перехват пологом растительности. Осадки, не задержанные растениями, поступают на поверхность почвы. Далее они могут уйти за пределы конкретного ландшафта в виде поверхностного стока или впитаться в почву, где пополняют запасы подземных вод и участвуют в элементарных почвообразовательных процессах. При определенных условиях запасы подземной воды могут либо уменьшаться, либо пополняться. Это может вызвать изменение режима и объема подземного и поверхностного стока.

В природной геосистеме вода расходуется в основном на испарение. Различают физическое испарение, которое может происходить как с растительности, так и с поверхности почвы, куда вода может поступать и из более глубоких горизонтов, а также испарение растениями, или транспирацию. Таким образом, суммарное испарение состоит из транспирации и физического испарения с поверхности почвы и растений.

В холодные сезоны года во многих геосистемах устанавливается снежный покров. Содержание воды в снежном покрове при выпадении осадков увеличивается, а при испарении (возгонке) и таянии – уменьшается. Изменения могут также происходить вследствие метелевого переноса снега. При промерзании почвы и грунтов часть подземной влаги может находиться в мерзлом состоянии. Но динамика ее в целом аналогична жидкой фазе.

Необходимо остановиться на содержании воды в растениях. Строго говоря, влага в живых растениях является их неотъемлемой частью и не может рассматриваться отдельно. Но для лучшего понимания распределения воды в геосистеме по его структурно-функциональным частям часто определяют содержание воды в растениях путем взвешивания. Знание этого соотношения часто очень важно в практических целях.

Большинство состояний природных геосистем характеризуется наличием лишь приходной и расходной части влагооборота. В результате схема влагооборота часто бывает очень простой и характеризуется тремя-четырьмя параметрами. Например, длительное время при зимних состояниях в геосистемах отсутствует транспирация и поверхностный сток, который лишь иногда заменяется метелевым переносом снега.

В отдельные состояния ПТК эта схема будет резко отличаться от среднегодичной схемы влагооборота. Интенсивность влагооборота и его структура (соотношение отдельных составляющих) специфичны для разных ландшафтов и зависят, прежде всего, от энергообеспеченности и количества осадков, подчиняясь зональным и азональным закономерностям.