Добавил:
Крутой челик Сюда выкладываю свои солянки, сделанные в процессе учебы. Многое недоделано и недоработано, но я надеюсь, что мой труд вам поможет и вам хватит сил довести все до ума. Передаю эстафету следующим поколениям))) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2. Подготовка к вопросам по теме Эмбриология.docx
Скачиваний:
0
Добавлен:
28.04.2024
Размер:
15.89 Mб
Скачать

3. Репродуктивный

Остановка роста и активное размножение

Вторичные половые признаки

Есть виды, размножающиеся однократно (лосось) и многократно (чем больше помет, тем меньше продолжительность жизни вида)

4. Пострепродуктивный (старение)

Связан со старением, характерно прекращение участия в размножении, устойчивость снижается. Различают внешние признаки старости (снижение эластичности кожи, поседение волос, развитие дальнозоркости) и внутренние (обратное развитие органов, снижение эластичности кровеносных сосудов, нарушение кровоснабжения мозга, деятельности сердца и др.). Все это приводит к снижению жизнеспособности и повышению вероятности гибели.

Существуют десятки гипотез, объясняющие механизмы старения. В настоящее время ученые рассматривают в качестве основных 2 причины старения:

·  износ биологических структур вследствие возрастного накопления ошибок в клеточных механизмах под действием мутаций;

·  генетически предопределенное разрушение.

5. Смерть

Смерть как биологическое явление – универсальный способ ограничить участие многоклеточного организма в размножении, обеспечить смену поколений и эволюционный процесс. Скорость нарастания и выраженность изменений в процесс старения зависит от генотипа, условий жизни, образа жизни, в т.ч. питания

  1. Эмбриологическая (по происходящим процессам):

    1. Дробление

    2. Гаструляция

    3. Гисто- и органогенез

  1. Антропологическая:

1. Предзиготный (предэмбриональный)

Период образования и созревания половых клеток

2. Пренатальный (эмбриональный)

Начинается с момента оплодотворения и заканчивается рождением или выходом из яйца. После оплодотворения зигота начинает дробиться, бластомеры постепенно выстраиваются по периферии, образуя однослойный зародыш – бластулу. Затем образуется двухслойный зародыш – гаструла, имеющая эктодерму и энтодерму, первичный рот – бластопор и полость – гастроцель. На следующем этапе закладывается третий слой клеток – мезодерма. Далее из этих пластов клеток образуются ткани и органы, т.е. идет гисто- и органогенез.

      1. Начальный – 1 неделя после оплодотворения.

      2. Зародышевый (зародыш называют эмбрионом) – со 2-ой по 9-ую недели после оплодотворения.

      3. Плодный (зародыш называют плодом) – с 9-ой по 40ую недели.

3. Постнатальный (постэмбриональный)

      1. Новорожденность (1-10 дней). Сложный период адаптации к совершенно новым условиям существования

      2. Грудной(до 1 года). Ребенок вскармливается молоком матери, в котором содержатся помимо питательных веществ, солей и витаминов готовые антитела

      3. Раннее детство (1 -3 года). Ребенок учится нормально ходить, говорить, начинает познавать окружающий мир

      4. Первое детство (4-6 лет). Ребенка интересует все окружающее и он стремится его понять

      5. Второе детство (м 7-12 лет, ж 7-11 лет). Школьный период до полового созревания.

      6. Подростковый (м 13-16 лет, ж 12-15 лет). Период наступления полового созревания.

      7. Юношеский (м 17-21 год, ж 16-20 лет). Период окончания роста, полового и физического созревания

      8. Первая зрелость (м 22-35 лет, ж 21-35 лет). Наилучший период для деторождения.

      9. Вторая зрелость (м 36-60 лет, ж 36-55 лет). Период максимального профессионализма; после 35 лет обнаруживаются изменения некоторых физиологических и биохимических реакций обмена, которые предшествуют инволюции; к концу этого периода происходят изменения, определяющие начало процессов старения и включаются механизмы, обеспечивающие перестройку организма и его адаптацию

      10. Пожилой (м 61-75 лет, ж 56-75 лет). В это период многие люди еще сохраняют достаточную профессиональную трудоспособность, хотя процессы старения продолжают развиваться

      11. Старческий (76-90 лет). Заметно выражены старческие изменения, однако в этом возрасте многие люди сохраняют ясность ума и способность к творческому труду

      12. Долгожители (более 90 лет). До этого последнего периода онтогенеза доживают преимущественно женщины.

  1. Основные этапы эмбриогенеза

  1. Оплодотворение, значение, морфо-биохимическая характеристика зиготы

  1. Дробление, сущность. Типы дробления и зависимость от типа яйцеклетки. Строение бластулы у разных позвоночных

  1. Гструляция, сущность, основные способы

  1. Зародышевые листки и их производные

  1. Производные экто- и энтодермы

Производные эктодермы – наружный слой кожи – эпителий и его производные: волосы, ногти, когти, рога, копыта, чешуя рыб, пресмыкающихся, кожные железы, нервная система, эмаль зубов, производные кожи: органы чувств: глаза, уши и др.

Производные энтодермы – эпителий внутренних органов: кишечника, жабр, лёгких. Пищеварительные железы – печень, поджелудочная железа.

Производными энтодермы являются: Эпителий желудка и кишки, клетки печени, секреторные клетки поджелудочной железы, слюнных, кишечных и желудочных желез. Передний отдел эмбриональной кишки образует эпителий легких и воздухоносных путей, а также секреторные клетки передней и средней доли гипофиза, щитовидной и паращитовидной желез..

  1. Образование мезодермы у птиц и млекопитающих, её дифференцировка

Производные мезодермы – хрящевая и костная ткань, мышцы, почки, сердечно – сосудистая система, половые железы, дентин зубов

  1. Осевой комплекс зачатков органов

  1. Дифференцировка сомитов мезодермы

  1. Дифференцировка листков спланхнотома

  1. Дифференцировка сегментных ножек мезодермы

  1. Мезенхима, источники развития, производные

  1. Понятие об эмбриональном гистогенезе и его составляющих

В эмбриогенезе человека наблюдаются все процессы, характерные для позвоночных животных: оплодотворение, образование зиготы, дробление, гаструляция, формирование трех зародышевых листков, обособление комплекса эмбриональных зачатков тканей и органов, а также мезенхимы, заполняющей пространства между зародышевыми листками.

Геном зиготы не активен. По мере дробления в клетках - бластомерах - отдельные части генома активизируются, причем в разных бластомерах - разные. Этот путь развития генетически запрограммирован и обозначается как детерминация. В результате появляются стойкие различия их биохимических (а также и морфологических) свойств - дифференцировка. Одновременно дифференцировка сужает потенции дальнейшей активации

генома, которая возможна теперь за счет его оставшейся неактивированной части - происходит ограничение возможностей развития - комми-тирование.

По времени дифференцировка не всегда совпадает с детерминацией: детерминация в клетках может уже совершиться, а специфические функции и морфологические особенности проявятся позже. Подчеркнем, что все эти процессы совершаются на уровне генома, но без изменения набора генов как целого: гены не исчезают из клетки, хотя они могут быть и не активными. Такие изменения называют эпигеномными, или эпигенетическими.

Вопрос о том, насколько возможен возврат активной части генома вновь в неактивное состояние (дедифференцировка) в естественных условиях, остается неясным (это не исключает таких возможностей при генно-инженерных экспериментах).

Дифференцировка и коммитирование в эмбриогенезе появляются не сразу. Они совершаются последовательно: сначала преобразуются крупные участки генома, детерминирующие наиболее общие свойства клеток, а позднее - более частные свойства. В развивающемся организме дифферен-цировка сопровождается специфической организацией или размещением специализирующихся клеток, что выражается в установлении определенного плана строения в ходе онтогенеза - морфогенеза.

В результате дробления зародыш разделяется на внезародышевую и зародышевую части, причем становление тканей идет и в той, и в другой. В результате гаструляции в зародышевой части формируются гипобласт и эпибласт, а далее - образуются три зародышевых листка. В составе последних вследствие детерминации обособляются эмбриональные зачатки (еще не ткани). Их клетки обладают такой детерминацией и, в то же время, коммитированием, что в естественных условиях они не могут превратиться в клетки другого эмбрионального зачатка. Эмбриональные зачатки в свою очередь представлены стволовыми клетками - источниками дифферонов, формирующих ткани в эмбриональном гистогенезе (рис. 5.1). Межклеточного вещества зачатки не имеют.

В процессе образования трех зародышевых листков часть клеток мезодермы выселяется в промежутки между зародышевыми листками и формирует сетевидную структуру - мезенхиму, заполняющую пространство между зародышевыми листками. В последующем дифференцировка зародышевых листков и мезенхимы, приводящая к появлению эмбриональных зачатков тканей и органов, происходит неодновременно (гетерохронно), но взаимосвязанно (интегративно).

На понятии «мезенхима» следует остановиться особо. Содержание, которое вкладывают в него, весьма разнообразно. Часто ее определяют как эмбриональную соединительную ткань либо как эмбриональный зачаток. В последнем случае говорят о развитии из мезенхимы конкретных тканей, на основе чего даже делают выводы о родственности этих тканей. Мезенхиму считают источником развития клеток фибробластического ряда и клеток крови, эндотелиоцитов и гладких миоцитов, клеток мозгового вещества надпочечников. В частности, такая концепция долгое время «обосновывала» принадлежность эндотелия к соединительной ткани с отрицани ем его тканевой специфичности. В некоторых учебниках анатомии до сих пор можно встретить классификацию мышц (как органов) на основании их развития либо из миотомов, либо из мезенхимы.

Рис. 5.1. Локализация эмбриональных зачатков тканей и органов в теле зародыша (срез зародыша в стадии 12 сомитов, по А. А. Максимову, с изменениями): 1 - кожная эктодерма; 2 - нервная трубка; 3 - нейральный гребень; 4 - дерматом; 5 - миотом; 6 - склеротом; 7 - сегментная ножка; 8 - выстилка целома; 9 - аорта, выстланная эндотелием; 10 - клетки крови; 11 - кишечная трубка; 12 - хорда; 13 - полость целома; 14 - мигрирующие клетки, образующие мезенхиму

Признание мезенхимы в качестве эмбриональной соединительной ткани вряд ли состоятельно, хотя бы потому, что клетки ее еще не обладают одним из основных свойств ткани - специфической функцией. Они не синтезируют коллаген, эластин, гликозаминогликаны, как это свойственно фибробластам соединительной ткани, они не сокращаются, как миоциты, не обеспечивают двустороннего транспорта веществ, как эндотелиоциты. Морфологически они неотличимы друг от друга. Вряд ли можно считать мезенхиму и единым эмбриональным зачатком: в ходе развития зародыша клетки многих из них выселяются в нее, будучи уже соответственно детерминированными.

В составе мезенхимы совершается, в частности, миграция промиобластов и миобластов (выселившихся из сомитов), предшественников меланоцитов и клеток мозгового вещества надпочечников, клеток АПУД-серии (высе-

лившихся из сегментов нейрального гребня), клеток-предшественников эндотелия (скорее всего, выселившихся из спланхнотомов) и другие. Можно полагать, что, мигрируя и вступая друг с другом в контактные или химические взаимоотношения, клетки могут детализировать свою детерминацию.

Во всяком случае, считать мезенхиму единым эмбриональным зачатком не приходится. В рамках эпигеномных представлений ее надо рассматривать как гетерогенное образование. Клетки мезенхимы, хотя и сходны по морфологическим признакам, вовсе не безлики и не однолики в эпигеном-ном смысле. Поскольку клетки мезенхимы дают начало многим тканям, ее называют также плюриили полипотентным зачатком. Такое понимание противоречит представлению о зачатках как клеточных группировках, в которых клетки уже достигли значительной степени коммитированности. Признание мезенхимы единым зачатком означало бы отнесение к одному типу таких тканей, как скелетная, мышечная, кровь, железистый эпителий мозгового вещества надпочечников и многих других.

Как уже было отмечено, говорить о происхождении какой-либо ткани из зародышевого листка совершенно недостаточно для характеристики свойств и принадлежности к гистогенетическому типу. Столь же малозначаще и постулирование развития какой-либо ткани из мезенхимы. Судьба клеток мезенхимы по завершении их миграции - дифференциация в клетки конкретных тканей в составе конкретных органов. После этого мезенхимы как таковой не остается. Поэтому концепции о так называемом мезенхимном резерве неправомерны. В составе дефинитивных тканей, безусловно, могут оставаться либо стволовые клетки, либо клетки-предшественники, но это - клетки с уже детерминированными гистиотипическими свойствами.

Диффероны. Совокупность клеток, ведущих свое начало от общей пред-ковой формы, можно рассматривать как ветвящееся дерево последовательных процессов детерминации, сопровождающихся при этом коммитиро-ванием путей развития. От клеток, у которых эти процессы совершаются на уровне эмбриональных зачатков, можно проследить отдельные ветви, ведущие к различным конкретным дефинитивным (зрелым) клеточным видам. Такие исходные клетки называют стволовыми, а совокупность ветвей их потомков объединяют в диффероны. В составе дифферона происходят дальнейшая детерминация и коммитирование потенций развития стволовой клетки, в результате чего возникают так называемые клетки-предшественники. В каждой из таких ветвей, в свою очередь, возникают уже зрелые дифференцированные клетки, которые затем стареют и отмирают (рис. 5.2). Стволовые клетки и клетки-предшественники способны к размножению и в совокупности могут быть названы камбиальными.

Так, в системе крови от единой стволовой клетки всех форменных элементов (см. более подробно в главе 7 «Кровь» и «Кроветворение») возникают общая ветвь гранулоцитов и моноцитов, общая ветвь различных видов лимфоцитов, а также не ветвящаяся эритроидная линия (иногда такие ветви и линии тоже рассматривают как отдельные диффероны).

Хотя стволовые клетки детерминируются еще в составе эмбриональных зачатков, они могут сохраняться и в тканях взрослых организмов, но их

Рис. 5.2. Схема организации клеточного дифферона:

Классы клеток в диффероне: I - стволовые клетки; II - полипотентные клетки-предшественники; III - унипотентные клетки-предшественники; IV - созревающие клетки; V - зрелые клетки; выполняющие специфические функции; VI - стареющие и гибнущие клетки. В классах I-III происходит размножение клеток, это отображено на схеме двумя стрелками, отходящими от клетки вправо. Митотическая активность при этом нарастает. Клетки классов IV-VI не делятся (вправо отходит лишь одна стрелка).

СК - стволовые клетки; КПП - клетки-предшественники полипотентные; КПУ - клетки-предшественники унипотентные; КСо - клетки созревающие (уже не делящиеся, но еще не имеющие окончательных специфических функций); КЗр - зрелые клетки (обладающие специфическими функциями); КСт - стареющие клетки (утрачивающие полноту специфических функций).

Цифры после указания на класс клеток условно означают номер поколения в данном классе, следующие за ними буквы - свойства клеток. Обратите внимание, что дочерние клетки, возникшие в результате последовательных делений (классы I-III), имеют разную детерминацию, но сохраняют ее свойства в классах IV-VI. Толстая стрелка слева, направленная вниз, - сигнал для деления стволовой клетки, после того как одна из них вышла из популяции и вступила на путь дифференцировки собственных предков уже не остается. Поэтому в организме нет таких клеточных форм, которые могли бы восполнить убыль стволовых, если она по какой-либо причине произошла, поэтому важнейшее свойство стволовых клеток -самоподдержание их популяции. Это означает, что в естественных условиях, если одна из стволовых клеток вступает на путь дифференциации, и, таким образом, общая их численность снижается на одну, восстановление популяции происходит только за счет деления аналогичной стволовой клетки из той же популяции. При этом она полностью сохраняет свои исходные свойства. В диффероне самоподдерживающуюся клеточную популяцию выделяют в класс I. Наряду с этим определяющим признаком, стволовые клетки обладают и более частными, но существенными, с медицинской точки зрения, свойствами: стволовые клетки делятся очень редко, следовательно, они наиболее устойчивы к повреждающим воздействиям. Поэтому в случае чрезвычайных ситуаций они гибнут в последнюю очередь. Пока стволовые клетки сохраняются в организме, клеточная форма регенерации тканей возможна после устранения вредоносных воздействий. Если пораженными оказались и стволовые клетки, то клеточная форма регенерации не происходит.

В отличие от стволовых клеток, численность популяции клеток-предшественников может пополняться не только за счет деления клеток, себе подобных, но и за счет менее дифференцированных форм. Чем далее заходит дифференцировка, тем меньшую роль играет самоподдержание, поэтому пополнение популяции дефинитивных клеток происходит, в основном, за счет деления предшественников на промежуточных этапах развития, а стволовые клетки включаются в размножение только тогда, когда активности промежуточных предшественников для пополнения популяции недостаточно.

Клетки-предшественники (иногда их называют полустволовыми) составляют следующую часть гистогенетического древа. Они коммитированы и могут дифференцироваться, но не по всем возможным, а лишь по некоторым направлениям. Если таких путей несколько, клетки называют полипо-тентными (класс II), если же они способны дать начало лишь одному виду клеток - унипотентными (класс III). Пролиферативная активность клеток-предшественников выше, чем у стволовых, и именно они пополняют ткань новыми клеточными элементами.

На следующем этапе развития деления прекращаются, но морфологические и функциональные свойства клеток продолжают изменяться. Такие клетки называют созревающими и относят к классу IV. По достижению окончательной дифференцировки зрелые клетки (класс V) начинают активно функционировать. На последнем этапе их специфические функции угасают и клетки гибнут путем апоптоза (стареющие клетки, класс VI). Направление развития клеток в диффероне зависит от многих факторов: в первую очередь, от интеркинов микроокружения и от гормональных.

Соотношение клеток различной степени зрелости в дифферонах разных тканей организма неодинаково. Клетки различных дифферонов в процессе гистогенеза могут объединяться, причем количество дифферонов в каждом виде тканей может быть различным. Клетки дифферонов, входящих в ткань, участвуют в синтезе ее общего межклеточного вещества. Результатом гистоге-нетических процессов является формирование тканей с их специфическими функциями, не сводимыми к сумме свойств отдельных дифферонов.

Итак, под тканями целесообразно понимать частные системы организма, относящиеся к особому уровню его иерархической организации и включающие в качестве ведущих элементов клетки. Клетки тканей могут относиться к единому или к нескольким стволовым дифферонам. Клетки одного из дифферонов могут преобладать и быть функционально ведущими. Все элементы ткани (клетки и их производные) равно необходимы для ее жизнедеятельности.

Соседние файлы в предмете Гистология, эмбриология, цитология