Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебники 60231.doc
Скачиваний:
20
Добавлен:
01.05.2022
Размер:
3.41 Mб
Скачать

3.4. Основные положения теории планирования эксперимента

Планирование эксперимента позволяет оптимизировать трудовые, временные и материальные затраты на проведение исследований, обеспечить их наиболее эффективное выполнение, а отсутствие соответствующего плана может существенно повысить трудоемкость исследований или сделать экспериментальную программу полностью безрезультатной.

Поскольку математические методы планирования эксперимента основаны на кибернетическом подходе, наиболее подходящей моделью эксперимента является «черный ящик», для которого известно лишь то, что подается на его вход, и то, что получается на выходе, а устройство этого ящика значения не имеет. Соответственно мы будем иметь два типа переменных (входных и выходных), которые называют факторами и откликами. Для выяснения различий между ними рассмотрим простой эксперимент, в котором рассматриваются лишь две переменные x и y и целью которого является ответ на вопрос: как при изменении x будет изменяться у В этом случае x фактор, а у – отклик. В литературе встречаются другие термины: для фактора – режим, независимая переменная, входная переменная, экзогенная переменная; для отклика – реакция, выход, зависимая переменная, переменная состояния, эндогенная переменная. Подобная терминология возникла в связи с тем, что первые исследования с применением статистических экспериментов проводились в сельском хозяйстве, биологии, а затем стремительно вторгались в другие ниши, пополняясь там терминами, наиболее близкими и понятными читателям.

Каждый фактор xi может принимать в эксперименте одно из нескольких значений, называемых уровнями. Каждому уровню соответствует определенная точка в многомерном пространстве, а множество таких точек образует поверхность отклика. На рис. 3.3 показана поверхность отклика для двухфакторного эксперимента. Факторами являются переменные х1 и х2. В точках 1, 2, 3, 4 эти факторы принимают определенные значения, которым отвечают соответствующие точки на поверхности отклика.

Рис. 3.3. Поверхность отклика

Конфигурация поверхности отклика, следовательно, функция не известна. Целью

(3.1)

эксперимента является либо описание этой поверхности (хотя бы приближенное) в интересной для исследователя области варьирования факторов, либо определение экстремального значения отклика. Вторая задача может быть сведена к пошаговому выполнению первой, поэтому на начальном этапе нас будет интересовать только поиск аналитического выражения, близкого к искомой функции (3.1) в заданной области. Этот поиск осуществляют на основе обработки экспериментальных данных в точках 1, 2, 3, 4 (рис. 3.3) факторного пространства.

3.4.1. Этапы планирования эксперимента

Общая схема планирования экспериментов для решения экстремальных задач состоит из следующих этапов:

1) постановка задачи;

2) выбор параметра оптимизации;

3) выбор факторов;

4) составление линейного плана;

5) реализация линейного плана и построение линейной модели;

6) поиск области экстремума;

7) описание области экстремума;

8) интерпретация результатов.

Постановка задачи. Решение любой задачи начинается с ее формулировки. При этом необходимо иметь ясное, четкое и вполне однозначное представление о цели работы. Желательно, чтобы эта цель была сформулирована количественно, так как планирование экспериментов связано прежде всего с установлением количественных связей между входными и выходными параметрами изучаемой системы. Разумеется, объект обследования должен быть управляемым.

Выбор параметра оптимизации. Одним из наиболее ответственных этапов является выбор параметра оптимизации. Он должен быть однозначным, характеризоваться числами, действительно определять оптимум. Надо стремиться к тому, чтобы параметр был только один, имел ясный физический смысл и оценивался с максимальной статистической эффективностью (последнее позволяет сократить до минимума число параллельных опытов).

Простейший случай имеет место, когда заранее известен и сам параметр, и то его значение, к которому следует стремиться. При этом иногда приходится изменять вид параметра (например, переходить от его натуральных значений к логарифмам, обратным величинам и пр.). Если значение параметра, к которому следует стремиться, неизвестно, все же следует пытаться установить ограничения его величины хотя бы с одной стороны.

Иногда параметр оптимизации приходится изменять из-за технических трудностей, связанных, например, с отсутствием необходимых методик или достоверных методов оценки. В этих условиях можно применять параметры, дающие косвенные оценки, но поиск экстремума становится во многом интуитивным, а интерпретация результатов усложняется.

Часто возникают трудности в количественной оценке параметра оптимизации. Тогда можно использовать субъективные ранговые параметры, такие, как сорт, балл, класс и др. Некоторые методы планирования экспериментов вообще не требуют количественных оценок параметра оптимизации.

Выбор факторов. Не менее сложен этап выбора факторов, влияющих на изменение параметра оптимизации. Если при постановке задачи пропустить какой-нибудь сильно влияющий фактор, то вся работа окажется бесполезной. Поэтому при планировании экспериментов необходимо включать в план исследования все факторы, которые могут влиять на параметр оптимизации. Часто выбранных факторов оказывается очень много; если число их превышает 10, то возникает задача отсеивания незначимых факторов.

Факторы, которые по тем или иным причинам невозможно учесть в эксперименте, необходимо в течение всех опытов стабилизировать на постоянных уровнях.

Важным требованием, предъявляемым к факторам, является невозможность их взаимозаменяемости. Взаимозаменяемость не следует допускать даже для двух любых факторов из общей совокупности.

Выбирая факторы, рекомендуется учитывать область, ограничивающую их возможное варьирование. Желательно, чтобы факторы имели количественную оценку, хотя планирование экспериментов возможно, когда некоторые факторы представлены качественно.

После выбора факторов для каждого из них устанавливают основной уровень и интервалы варьирования. Последние следует выбирать таким образом, чтобы их величина не превышала удвоенной среднеквадратичной ошибки в определении данного фактора.

Составление линейного плана и определение коэффициентов регрессии производят по правилам, изложенным в первых двух разделах данной главы.

Определение доверительных интервалов коэффициентов регрессии. Если проводятся повторные серии опытов или осуществляется несколько прогонов модели на компьютере, то возникает задача статистической оценки коэффициентов регрессии. После определения таких коэффициентов следует прежде всего установить их статистическую значимость. С этой целью проверяют гипотезу об однородности выборочных дисперсий и вычисляют доверительные интервалы коэффициентов регрессии.

Статистический анализ уравнения регрессии. После вычисления коэффициентов регрессии и проверки их значимости проводят статистический анализ уравнения регрессии. С этой целью проверяют гипотезу об адекватности данного уравнения, т. е. ищут ответ на вопрос, соответствует ли полученное линейное уравнение изучаемому явлению или необходима более сложная модель.

Количественной оценкой адекватности уравнения регрессии является дисперсия неадекватности, характеризующая квадрат отклонений экспериментальных значений у от теоретических. Гипотезу адекватности обычно проверяют с помощью критерия Фишера, но возможно использование других критериев.

Адекватность линейного уравнения можно проверить и другим способом. Свободный член уравнения регрессии bо является, по сути дела, оценкой результата опыта на основном уровне, когда все остальные факторы исключены. Поэтому, сделав соответствующий опыт, можно сравнить его результат с величиной свободного члена, т.е. проверить гипотезу о равенстве нулю суммы коэффициентов при квадратичных членах (нуль-гипотезу). Нуль-гипотеза может быть принята, если разность |b0у0| не превышает среднеквадратической ошибки эксперимента. Значимость этого различия иногда проверяют сопоставлением с критерием Стьюдента.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]