Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги / Наноструктуры и наноматериалы. Синтез, свойства и применение

.pdf
Скачиваний:
15
Добавлен:
19.11.2023
Размер:
40.53 Mб
Скачать

Одномерные наноструктуры: нанонити и наностержни

193

2d I*-

Фоторезист (0,4 мкм) i— Si (100 нм)

S i0 2 (0,5 мкм)

Экспонирование ультрафиолетовым излучением и проявление

Полоска фоторезиста

Реактивное ионное травление и удаление фоторезиста

Полоска кремния

К огда d= 2 мкм, w=130 нм

1)Окисление

2)Охлаждение

3)Окисление

Рис. 4.38. Последовательность операций, используемых для получения монокристаллических кремниевых нанонитей [Y. Yin, В. Gates, and Y. Xia, Adv. Mater. 12, 1426 (2000)].

Одномерные наноструктуры: нанонити и наностержни

195

фоторезиста, а затем было перенесено на подложку с помощью реактивного ион­ ного травления или процесса жидкостного травления. Кремниевые нанострукту­ ры отделяли от подложки с помощью небольшого перетравливания. На рис. 4.39 представлены СЭМ-изображения кремниевых наноструктур, полученных с помо­ щью такой ближнеполевой оптической литографии, с последующим переносом изображения на кремний с помощью реактивного ионного травления, окисления кремния при 850°С на воздухе в течение ~1 ч и отслаивания в растворе HF [209].

4.6.Заключение

Вэтой главе обобщены основы и общие подходы к изготовлению одномерных наноструктур. Фундаментальные идеи способствуют развитию разнообразных методов формирования таких структур, которые уже реализованы на практике. Однако не все методы синтеза рассмотрены в этой главе. Ее содержание ограни­ чено наиболее важными принципами и концепциями различных наиболее часто применяющихся методов синтеза одномерных наноструктур.

Литература

1.G.R. Patzke, F. Krumeich, and R. Nesper, Angew. Chem. Int. Ed. 41,2446 (2002).

2.RM. Ajayan, O. Stephan, R Redlich, and C. Colliex, Nature 375, 564 (1995).

3.H.-J. Muhr, R Krumeich, U.R Schonholzer, R Bieri, M. Niederberger, L.J. Gauckler, and R. Nesper, Adv. Mater. 12, 231 (2000).

4.R Krumeich, H.-J. Muhr, M. Niederberger, R Bieri, M. Reinoso, and R. Nesper,

Mater. Res. Soc. Symp. Proc. 581, 393 (2000).

5.J.M. Reinoso, H.-J. Muhr, R Krumeich, R Bieri, and R. Nesper, Helv. Chim. Acta

83, 1724 (2000).

6.A. Dobley, K. Ngala, S.Yang, RY. Zavalij, and M.S. Whittingham, Chem. Mater. 13, 4382 (2001).

7.K.S. Pillai, R Krumeich, H.-J. Muhr, M. Niederberger, and R. Nesper, Solid State Ionics 141-142, 185 (2001).

8.S.M. Liu, L.M. Gan, L.H. Liu, W.D. Zhang, and H.C. Zeng, Chem. Mater. 14, 1391

( 2002).

9.R.A. Caruso, J.H. Schattka, and A. Greiner, Adv. Mater. 13, 1577 (2001).

10.D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dick­ ey, J. Mater. Res. 16, 3331 (2001).

11.T. Kasuga, M. Hiramutsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater. 11,1307

(1999).

12. B.C. Satishkumar, A. Govindaraj, E.M. Vogl, L. Baumallick, and C.N.R. Rao, J. Mater. Res. 12, 604 (1997).

196

Глава 4

13.В.С. Satishkumar, A. Govindaraj, М. Nath, and C.N.R. Rao, J. Mater. Chem. 10, 2115(2000).

14.C.N.R. Rao, B.C. Satishkumar, andA. Govindaraj, Chem. Commun. 16,1581 (1997).

15.Y. Xia, R Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, R Kim, and H. Yan, Adv. Mater. 15, 353 (2003).

16.R Hartman and W.G. Perdok, Acta Cryst. 8, 49 (1955).

17.A.W. Vere, Crystal Growth: Principles and Progress, Plenum, New York, 1987.

18.W. Burton, N. Cabrera, and RC. Frank, Phil. Trans. Roy. Soc. 243, 299 (1951).

19.P. Hartman and W.G. Perdok, Acta Crystal. 8,49 (1955).

20.P. Hartman, Crystal Growth: An Introduction, North Holland, Amsterdam, 1973.

21.C. Herring, Structure and Properties o fSolid Surfaces, University of Chicago, Chi­ cago, IL, 1952.

22.W.W. Mullins, Metal Surfaces: Structure Energetics and Kinetics, Am. Soc. Met. Metals Park, OH, 1962.

23.G.W. Sears, Acta Metal. 3, 361 (1955).

24.G.W. Sears, Acta Metal. 3, 367 (1955).

25.E .I. Givargizov, Highly Anisotropic Crystals, D. Reidel, Dordrecht, 1986.

26.G. Bogels, H. Meekes, P. Bennema, and D. Bollen, J. Phys. Chem. B103, 7577

(1999).

27.W. Dittmar and K. Neumann, in Growth andPerfection ofCrystals, eds., R.H. Doremus, R.W. Roberts, and D. Turnbull, John Wiley, New York, p. 121, 1958.

28.R.L. Schwoebel and E.J. Shipsey, J. Appl. Phys. 37, 3682 (1966).

29.R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969).

30.Z.Y. Zhang and M.G. Lagally, Science 276, 377 (1997).

31.Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science 291, 1947 (2001).

32.Z.L. Wang, Adv. Mater. 15,432 (2003).

33.M. Volmer and I. Estermann, Z. Physik. 7, 13 (1921).

34.X.Y. Kong and Z.L. Wang, Nano Lett. 3, 1625 (2003).

35.Y. Liu, C. Zheng, W. Wang, C. Yin, and G. Wang, Adv. Mater. 13, 1883 (2001).

36.Y. Yin, G. Zhang, and Y. Xia, Adv. Funct. Mater. 12, 293 (2002).

37.X. Jiang, T. Herricks, and Y. Xia, Nano Lett. 2, 1333 (2002).

38.Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, and X. Zhang, Chem. Mater. 14, 3564 (2002).

39.E.G. Wolfe and T.D. Coskren, J. Am. Ceram. Soc. 48, 279 (1965).

40.S. Hayashi and H. Saito, J. Cryst. Growth 24/25, 345 (1974).

41.W. Shi, H. Peng, Y. Zheng, N. Wang, N. Shang, Z. Pan, C. Lee, and S. Lee, Adv. Mater. 12, 1343 (2000).

42.P. Yang and C.M. Lieber, Science 273, 1836 (1996).

43.B. Gates, Y. Yin, and Y. Xia, J. Am. Chem. Soc. 122, 12582 (2000).

44.B. Wunderlich and H.-C. Shu, J. Cryst. Growth 48, 227 (1980).

45.B. Mayers, B. Gates, Y. Yin, and Y. Xia, Adv. Mater. 13, 1380 (2001).

46.A.A. Kudryavtsev, The Chemistry and Technology ofSelenium and Tellurium, Col­ let’s, London, 1974.

Одномерные наноструктуры: нанонити и наностержни

197

47.В. Gates, Y. Yin, and Y. Xia, J. Am. Chem. Soc. 122, 582 (1999).

48.Y. Li, Y. Ding, and Z. Wang, Adv. Mater. 11, 847 (1999).

49.W. Wang, C. Xu, G. Wang, Y. Liu, and C. Zheng, Adv. Mater. 14, 837 (2002).

50.Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett. 2, 165 (2002).

51.K. Govender, D.S. Boyle, P. O’Brien, D. Brinks, D. West, and D. Coleman, Adv. Mater. 14, 1221 (2002).

52.J.J. Urban, W.S. Yun, Q. Gu, andH. Park,/. Am. Chem. Soc. 124, 1186 (2002).

53.J.J. Urban, J.E. Spanier, L. Ouyang, W.S. Yun, and H. Park, Adv. Mater. 15, 423 (2003).

54.H.W. Liao, Y.F. Wang, X.M. Liu, Y.D. Li, and Y.T. Qian, Chem. Mater. 12, 2819

( 2000).

55.Q. Chen, W. Zhou, G. Du, and L.-M. Peng, Adv. Mater. 14, 1208 (2002).

56.R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

57.R.S. Wagner, W.C. Ellis, K.A. Jackson, and S.M. Arnold, J. Appl. Phys. 35, 2993 (1964).

58.R.S. Wagner, in Whisker Technology, ed. A.P. Levitt, Wiley, New York, 1970.

59.R.S. Wagner and W.C. Ellis, Tans. Metal. Soc. AIME 233, 1053 (1965).

60.G.A. Bootsma and H.J. Gassen, J. Cryst. Growth 10,223 (1971).

61.C.M. Lieber, Solid State Commun. 107, 106 (1998).

62.J. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32,435 (1999).

63.A.M. Morales and C.M. Lieber, Science 279, 208 (1998).

64.D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J. Wang, YH. Zou, W. Qian, G.C. Xoing, H.T. Zhou, and S.Q. Feng, Appl. Phys. Lett. 72, 3458 (1998).

65.D.P. Yu, C.S. Lee, I. Bello, X.S. Sun, Y. Tang, G.W. Zhou, Z.G. Bai, and S.Q. Feng,

Solid State Commun. 105, 403 (1998).

66.X. Duan and C.M. Lieber, Adv. Mater. 12, 298 (2000).

67.E.I. Givargizov, J. Vac. Sci. Technol. В 11, 449 (1993).

68.Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000).

69.M.S. Gudiksen, J. Wang, and C.M. Lieber, J. Phys. Chem. B105, 4062 (2001).

70.M.S. Gudiksen and C.M. Lieber, J. Am. Chem. Soc. 122, 8801 (2000).

71.T. Dietz, M. Duncan, M. Liverman, andR.E. Smalley,/. Chem. Phys. 73,4816 (1980).

72.H.N.V. Temperley, Proc. Combridge Phil. Soc. 48, 683 (1952).

73.K.A. Jackson, Growth and Perfection of Crystals, John Wiley and Sons, New York,

1958.

74.Y. Wang, G. Meng, L. Zhang, C. Liang, and J. Zhang, Chem. Mater. 14,1773 (2002).

75.Y.Q. Chen, K. Zhang, B. Miao, B. Wang, and J.G. Hou, Chem. Phys. Lett. 358, 396

(2002).

76.K.-W. Chang and J.-J. Wu, /. Phys. Chem. B106, 7796 (2002).

77.D. Zhang, D.N. Mcllroy, Y. Geng, and M.G. Norton, J. Mater. Sci. Lett. 18, 349

(1999).

78.1.-C. Leu, Y.-M. Lu, and M.-H. Hon, Mater. Chem. Phys. 56, 256 (1998).

79. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13, 113

(2001).

198

Глава 4

80.D.R. Askkeland, The Science andEngineering ofMaterials, PWS, Boston, MA, 1989.

81.Y.C. Choi, W.S. Kim, Y.S. Park, S.M. Lee, D.J. Bae, Y.H. Lee, G-S. Park, W.B. Choi, N.S. Lee, and J.M. Kim, Adv. Mater. 12, 746 (2000).

82.Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, G.C. Xoing, and S.Q. Feng, Chem. Phys. Lett. 303, 311 (1999).

83.D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xoing, and S.Q. Feng, Appl. Phys. Lett. 73, 3076 (1998).

84.C.C. Chen and C.C. Yeh, Adv. Mater. 12, 738 (2000).

85.X.F. Duan and C.M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).

86.X. Chen, J. Li, Y. Cao, Y. Lan, H. Li, M. He, C. Wang, Z. Zhang, and Z. Qiao, Adv. Mater. 12, 1432 (2000).

87.T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gobbons, and W.E. Buhro, Science 270, 1791 (1995).

88.W.E. Buhro, Polyhedron 13, 1131 (1994).

89.H. Yu and W.E. Buhro, Adv. Mater. 1 5 ,416 (2003).

90.M.J. Ludowise, J. Appl. Phys. 58, R31 (1985).

91.J.D. Holmes, K.P. Johnston, C. Doty, and B.A. Korgel, Science 287, 1471 (2000).

92.J. Franks, Acta Metal. 6, 103 (1958).

93.R.M. Fisher, L.S. Darken, and K.G. Carroll, Acta Metal. 2, 368 (1954).

94.J.D. Eshelby, Phys. Rev. 91, 775 (1953).

95.S.E. Koonce and S.M. Arnold, J. Appl. Phys. 24, 365 (1953).

96.G.Z. Cao and D.W. Liu, (Review Article), Adv. Coll. Inter. Sci. 136,45 (2008).

97.R.C. Fumeaux, W.R. Rigby, and A.P. Davidson, Nature 337, 147 (1989).

98.R.L. Fleisher, P.B. Price, and R.M. Walker, Nuclear Tracks in Solids, University of California Press, Berkeley, CA, 1975.

99.R.J. Tonucci, B.L. Justus, A.J. Campillo, and C.E. Ford, Science 258, 783 (1992).

100.G.E. Possin, Rev. Sci. Instrum. 41, 772 (1970).

101.C. Wu and T. Bein, Science 264, 1757 (1994).

102.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H. Dai, Science 283,512(1999).

103.P. Enzel, J.J. Zoller, andT. Bein, Chem. Commun. 633 (1992).

104.C. Guerret-Piecourt, Y. LeBouar,A. Loiseau, andH. Pascard, Nature372,761 (1994).

105.P.M. Ajayan, O. Stephan, P. Redlich, and C. Colliex, Nature 375, 564 (1995).

106.A. Despic and V.P. Parkhuitik, Modem Aspects of Electrochemistry, Vol. 20, Ple­ num, New York, 1989.

107.D. AlMawiawi, N. Coombs, and M. Moskovits, J. Appl. Phys. 70,4421 (1991).

108.C.A. Foss, M.J. Tierney, and C.R. Martin, J. Phys. Chem. 96, 9001 (1992).

109.J.B. Mohler and HJ. Sedusky, Electroplatingfor the Metallurgist, Engineer and Chemist, Chemical Publishing Co., Inc. New York, 1951.

110.A.J. Bard and L.R. Faulkner, Electrochemical Methods, John Wiley and Sons, New York, 1980.

111.J. W. Evans and L.C. De Jonghe, The Production o fInorganic Materials, Macmil­ lan, New York, 1991.

Одномерные наноструктуры: нанонити и наностержни

199

112.F.R.N. Nabarro and PJ. Jackson, in Growth and Perfection o f Crystals, eds. R.H. Doremus, B.W. Roberts, and D. Turnbull, John Wiley, New York, p. 13, 1958.

113.T.M. Whitney, J.S. Jiang, RC. Searson, and C.L. Chien, Science 261,1316(1993).

114.W.D. Williams and N. Giordano, Rev. Sci. Instrum. 55, 410 (1984).

115.B.Z. Tang and H. Xu, Macromolecules 32, 2569 (1999).

116.Y. Zhang, G. Li, Y. Wu, B. Zhang, W. Song, and L. Zhang, Adv. Mater. 14, 1227

(2002).

117.G. Yi and W. Schwarzacher, Appl. Phys. Lett. 74, 1746 (1999).

118.J.D. Klein, R.D. Herrick, II, D. Palmer, M.J. Sailor, C.J. Brumlik, and C.R. Mar­ tin, Chem. Mater. 5, 902 (1993).

119.C. Schonenberger, B.M.I. van der Zande, L.G.J. Fokkink, M. Henny, C. Schmid, M. Kriiger, A. Bachtold, R. Huber, H. Birk, and U. Staufer, J. Phys. Chem. В 101,

5497 (1997).

120.C.J. Brumlik, V.P. Menon, and C.R. Martin, J. Mater. Res. 268, 1174 (1994).

121.C.J. Brumlik and C.R. Martin, J. Am. Chem. Soc. 113, 3174 (1991).

122.C.J. Miller, C.A. Widrig, D.H. Charych, and M. Majda, J. Phys. Chem. 92, 1928

(1988).

123.C.-G. Wu and T. Bein, Science 264, 1757 (1994).

124.P.M. Ajayan, O. Stephan, and Ph. Redlich, Nature 375, 564 (1995).

125.W. Han, S. Fan, Q. Li, and Y. Hu, Science 211, 1287 (1997).

126.G.O. Mallory and J.B. Hajdu (eds.), Electroless Plating: Fundamentals and Ap­ plications, American Electroplaters and Surface Finishers Society, Orlando, FL,

1990.

127.C.R. Martin, Chem. Mater. 8, 1739 (1996).

128.C.R. Martin, Science 266, 1961 (1994).

129.C.R. Martin, Adv. Mater. 3, 457 (1991).

130.J.C. Hulteen and C.R. Martin, J. Mater. Chem. 7, 1075 (1997).

131.L. Piraux, S. Dubois, andS. Demoustier-Champagne, Nucl. Instrum. Meth. Phys.

Res. B131, 357 (1997).

132.1. Zhitomirsky, Adv. Colloid Interf. Sci. 97, 297 (2002).

133.O.O. Van der Biest and LJ. Vandeperre, Annu. Rev. Mater. Sci. 29, 327 (1999).

134.P. Sarkar and P.S. Nicholson, J. Am. Ceram. Soc. 79, 1987 (1996).

135.J.S. Reed, Introduction to the Principles of Ceramic Processing, John Wiley and

Sons, New York, 1988.

136.R.J. Hunter, Zeta Potential in Colloid Science: Principles andApplications, Aca­ demic Press, London, 1981.

137.C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, CA, 1990.

138.A.C. Pierre, Introduction to Sol-Gel Processing, Kluwer, Norwell, MA, 1998.

139.J.D. Wright and N.A.J.M. Sommerdijk, Sol-Gel Materials: Chemistry and Ap­ plications, Gordon and Breach, Amsterdam, 2001.

140.D.H. Everett, Basic Principles of Colloid Science, The Royal Society of Chem­

istry, London, 1988.

200

Глава 4

141.W.D. Callister, Materials Science and Engineering: An Introduction, John Wiley and Sons, New York, 1997.

142.SJ. Limmer, S. Seraji, M J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, and G.Z. Cao, Adv. Mater. 13, 1269 (2001).

143.SJ. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, and G.Z. Cao,

Adv. Func. Mater. 12, 59 (2002).

144.S.J. Limmer and G.Z. Cao, Adv. Mater. 15,427 (2003).

145.G.Z. Cao (Invited Feature Article), J. Phys. Chem. B108, 19921 (2004).

146.Y.C. Wang, I.C. Leu, and M.N. Hon, J. Mater. Chem. 12,2439 (2002).

147.Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, and Y Tang, Nano Lett. 2, 717 (2002).

148.C. Natarajan and G. Nogami, J. Electrochem. Soc. 143, 1547 (1996).

149.B.B. Lakshmi, P.K. Dorhout, and C.R. Martin, Chem. Mater. 9, 857 (1997).

150.R.L. Penn and J.F. Banfield, Geochim. Cosmochim. Ac. 63, 1549 (1999).

151.B.B. Lakshmi, C.J. Patrissi, and C.R. Martin, Chem. Mater. 9, 2544 (1997).

152.J.S. Reed, Introduction to Principles of Ceramic Processing, Wiley, New York, 1988.

153.C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Manalis, and C.B. Prater, Sci­ ence 263, 800 (1994).

154.Z. Zhang, D. Gekhtman, M.S. Dresselhaus, and J.Y. Ying, Chem. Mater. 11, 1659 (1999).

155.W. Liang and C.R. Martin, J. Am. Chem. Soc. 112, 9666 (1990).

156.S.M. Marinakos, L.C. Brousseau, III, A. Jones, and D.L. Feldheim, Chem. Mater. 10, 1214 (1998).

157.P. Enzel, J.J. Zoller, and T. Bein, Chem. Commun., 633 (1992).

158.H.D. Sun, Z.K. Tang, J. Chen, and G. Li, Solid State Commun. 109, 365 (1999).

159.Z. Cai, J. Lei, W. Liang, V. Menon, and C.R. Martin, Chem. Mater. 3, 960 (1991).

160.Y.-J. Han, J.M. Kim, and G.D. Stucky, Chem. Mater. 12,2068 (2000).

161.L. Chen, P.J. Klar, W. Heimbrodt, F. Brieler, and M. Froba, Appl. Phys. Lett. 76, 3531 (2000).

162.K. Matsui, T. Kyotani, and A. Tomita, Adv. Mater. 14, 1216 (2002).

163.R. Leon, D. Margolese, G. Stucky, and P.M. Petroff, Phys. Rev. В 52, R2285 (1995).

164.K.-B. Lee, S.-M. Lee, and J. Cheon, Adv. Mater. 13, 517 (2001).

165.T.L. Wen, J. Zhang, T.P. Chou, S.J. Limmer, and G.Z. Cao, J. Sol-Gel Sci. Technol. 33, 193-200 (2005).

166.C.-G. Wu and T. Bein, Science 264, 1757 (1994).

167.B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001).

168.Y. Xia, Lecture Note o fSPIE Short Course 496, 1 July 2002.

169.H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, and C.M. Lieber, Nature 375, 769 (1995).

170.E.W. Wong, B.W. Maynor, L.D. Bums, and C.M. Lieber, Chem. Mater. 8,2041 (1996).

171.W. Han, S. Fan, Q. Li, B. Gu, X. Zhang, andD. Yu, Appl. Phys. Lett. 71,2271 (1997).

172.A. Huczko, Appl. Phys. A70, 365 (2000).

173.Y. Li, G.S. Cheng, and L.D. Zhang, J. Mater. Res. 15, 2305 (2000).

174.C.M. Zelenski and P.K. Dorhout, J. Am. Chem. Soc. 120, 734 (1998).

Одномерные наноструктуры: нанонити и наностержни

201

175.Е. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature 391, 775 (1998).

176.J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia, and Y. Qian, Adv. Mater. 12, 1348

(2000).

177.J. Richter, M. Mertig, W. Pompe, I. Monch, and H.K. Schackert, Appl. Phys. Lett. 78 (2001).

178.M. Remeika and A. Bezryadin, Nanotechnology 16, 1172 (2005).

179.R. Seidel, L.C. Ciacchi, M. Weigel, W. Pompe, and M. Mertig, J. Phys. Chem. В 108, 10801 (2004).

180.J.M. Kinsella and A. Ivanisevic, Langmuir 23, 3886 (2007).

181.K. Keren, R.S. Berman, E. Buchstab, U. Sivan, and E. Braun, Science 302, 1380 (2003).

182.S. Beyer, P. Nickels, and F.C. Simmel, Nano Lett. 5, 719 (2005).

183.S.H. Park, R. Barish, H. Li, J.H. Reif, G. Finkelstein, H. Yan, and T.H. LaBean, Nano Lett. 5, 693 (2005).

184.H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean, Science 301, 1882 (2003).

185.D. Liu, S. Ha Park, J.H. Reif, and T.H. LaBean, PNAS101, 717 (2004).

186.Z. Deng and C. Mao, Nano Lett. 3, 1545 (2003).

187.Y. Ma, J. Zhang, G. Zhang, and H. He, J. Am. Chem. Soc. 126, 7097 (2004).

188.A. Frenot and I.S. Chronakis, Current Opin. Coll. Interf. Sci. 8, 64 (2003).

189.D.H. Reneker and I. Chun, Nanotechnology 7, 216 (1996).

190.H. Fong, W. Liu, C.S. Wang, and R.A. Vaia, Polymer 43, 775 (2002).

191.J.A. Mathews, G.E. Wnek, D.G. Simpson, and GL. Bowlin, Biomacromolecules 3, 232 (2002).

192.G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, and I.G. Loscertales, J. Am. Chem. Soc. 125, 1154 (2003).

193.H. Dai, J. Gong, H. Kim, and D. Lee, Nanotechnology 13, 674 (2002).

194.D. Li and Y Xia, Nano Lett. 3, 555 (2003).

195.H. Hou and D.H. Reneker, Adv. Mater. 16, 69 (2004).

196.J. Doshi and D.H. Reneker, J. Electrostat. 35, 151 (1995).

197.A. Formhals, US Patent No. 1,975,504.

198.R. Sen, B. Zhao, D. Perea, M.E. Itkis, M. Hu, J. Love, E. Bekyarova, and R.C. Haddon, Nano Lett. 4,459 (2004).

199.F. Ко, et a l Adv. Mater. 1 5 ,1161 (2003).

200.M. Wang, H. Singh, A. Hatton, and G.C. Rutledge, Polymer 45, 5505 (2004).

201.C. Shao, H.Y. Kim, J. Gong, B. Ding, D.R. Lee, and S.J. Park, Mater. Lett. 57,1579 (2003).

202.Q.B. Yang, D.M. Li, Y.L. Hong, C. Wang, SL. Qiu, and Y Wei, Synth. Met. 137, 973 (2003).

203.G-M. Kim, A. Wutzler, H.-J. Radusch, G.H. Michler, P. Simon, R.A. Sperling, and W.J. Parak, Chem. Mater. 17,4949 (2005).

204.M. Bashouti, W. Salalha, M. Brumer, E. Zussman, and E. Lifshitz, Chem. Phys. Chem. 7, 102 (2006).