Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен вышка.doc
Скачиваний:
35
Добавлен:
17.04.2019
Размер:
3.04 Mб
Скачать

22. Функция, область ее определения и способы задания. Сложные и обратные функции.

ФУНКЦИЯ - соответствие y = f (x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента, или независимого переменного) соответствует определенное значение другой величины y (зависимой переменной, или функции).

Переменная y называется функцией переменной x, если каждому допустимому значению х соответствует определенное значение y.

Символически функциональная зависимость между переменной y (функцией) и переменной х (аргументом) записывается с помощью равенства y = f(x), где f обозначает совокупность действий, которые надо произвести над х, чтобы получить y.

Областью определения (существования) функции D(y) называется множество всех действительных значений аргумента х (множество всех точек числовой оси), при которых она имеет действительное значение.

Для задания функции необходимо и достаточно знать закон соответствия f, по которому для каждого значения аргумента можно указать единственное значение функции и область определения D(y).

Способы задания функций

Функция может быть задана:

Аналитически (формулой): зависимость между аргументом и функцией задается в виде математической формулы. В этой формуле указаны действия, которые нужно произвести над значением аргумента, чтобы получить соответствующее значение функции.

Таблицей: значения аргумента и соответствующие им значения функции записаны в виде таблицы.

Графиком: совокупность точек плоскости, абсциссы которых являются значениями независимой переменной, а ординаты – соответствующими значениями функции, называется графиком данной функции.

Сложная функция.

Пусть функция определена на множестве , а функция на множестве , причем для соответствующее значение . Тогда на множестве определена функция , которая называется сложной функцией от (или суперпозицией заданных функций, или функцией от функции).

Переменную называют промежуточным аргументом сложной функции.

Например, функция есть суперпозиция двух функций и . Сложная функция может иметь несколько промежуточных аргументов.

Обратная функция.

Пусть задана функция с областью определения и множеством значений Е. если каждому значению соответствует единственное значение , то определена функция с областью определения Е и множеством значений . Такая функция называется обратной к функции и записывается в следующем виде: . Про функции и говорят, что они являются взаимно обратными. Чтобы найти функцию , обратную к функции , достаточно решить уравнение относительно (если это возможно).

Пример. Для функции обратной функцией является функция ;

Пример. Для функции , обратной функцией является ; заметим, что для функции заданной на отрезке , обратной не существует, т.к. одному значению соответствует два значения .

Из определения обратной функции вытекает, что функция имеет обратную тогда и только тогда, когда функция задает взаимно однозначное соответствие между множествами и Е. отсюда следует, что любая строго монотонная функция имеет обратную. При этом если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Заметим, что функция и обратная ей изображаются одной и той же кривой, т.е. графики их совпадают. Если же условиться, что, как обычно, независимую переменную (т.е. аргумент) обозначить через , а зависимую переменную через , то функция обратная функции запишется в виде .

Графики взаимно обратных функций и симметричны относительно биссектрисы первого и третьего координатных углов.

Соседние файлы в предмете Высшая математика