Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Неорганическая химия. Ответы к экзамену.docx
Скачиваний:
236
Добавлен:
26.11.2022
Размер:
2.78 Mб
Скачать

47. Теория строения комплексных соединений (теория Вернера): внутренняя и внешняя сфера, комплексообразователь, лиганды, координационное число, дентантность.

Комплексные соединения это молекулярные или ионные соединения, образующиеся путем присоединения к атому или иону металла, или неметалла, нейтральных молекул или других ионов. Они способны существовать как в кристалле, так и в растворе.

А. Вернером была предложена координационная теория, в которую он ввел два понятия: о координации и о побочной валентности.

По Вернеру главной валентностью называется валентность, посредством которой соединяются атомы с образованием простых соединений, подчиняющихся теории валентности. Но, исчерпав главную валентность, атом способен, как правило, к дальнейшему присоединению за счет побочной валентности, в результате проявления которой и образуется комплексное соединение.

Под действием сил главной и побочной валентности атомы стремятся равномерно окружить себя ионами или молекулами и являются таким образом центром притяжения.

Такие атомы называются центральными или комплексообразователями. Ионы или молекулы, непосредственно связанные с комплексообразователем, называются лигандами.

Посредством главной валентности присоединяются лиганды ионы, а посредством побочной валентности – ионы и молекулы.

Притяжение лиганд к комплексообразователю называется координацией, а число лиганд – координационным числом комплексообразователя.

Можно сказать, что комплексные соединения — это соединения, молекулы которых состоят из центрального атома (или иона) непосредственно связанного с определённым числом других молекул или ионов, называемых лигандами.

В роли комплексообразователей чаще всего выступают катионы металлов (Со+3, Рt+4, Cr+3, Cu+2, Au+3 и др.)

В качестве лигандов могут выступать ионы Cl-, CN-, NCS-, NO2-, OH-, SO42- так и нейтральные молекулы NH3, H2O, амины, аминокислоты, спирты, тиоспирты, РН3, эфиры.

Число координационных мест, занимаемых лигандом около комплексообразователя, называется его координационной ёмкостью или дентатностью.

Лиганды, присоединенные к комплексообразователю одной связью, занимают одно координационное месть и называются монодентатнымия (Cl-, CN-, NCS-). Если же лиганд присоединён к комплексообразователю посредством нескольких связей, то он является полидентатным. Например: SO42- , СО32-являются бидентатными.

Комплексообразователь и лиганды составляют внутреннюю сферу соединения или комплекс (в формулах комплекс заключают в квадратные скобки). Ионы, не связанные непосредственно с комплексообразвателем, составляют внешнюю координационную сферу.

Ионы внешней сферы связаны менее прочно по сравнению с лигандами и пространственно удалены от комплексообразователя. Они легко замещаются другими ионами в водных растворах.

Например, в соединении К3[Fe(CN)6] комплексообразователем является Fe+2, лигандами - CN-. Два лиганда присоединены за счет главной валентности, а 4 – за счет побочной валентности, следовательно, координационное число равно 6.

Ион Fe+2 с лигандами CN- составляют внутреннюю сферу или комплекс, а ионы К+ внешнюю координационную сферу:

Как правило координационное число равно удвоенному заряду катиона металла, например: однозарядные катионы имеют координационное число равное 2, 2-х зарядные – 4, а 3-х зарядные – 6. если элемент проявляет переменную степень окисления, то с увеличением её координационное число растет. Для некоторых комплексообразователей координационное число является постоянным, например: Со+3, Рt+4, Cr+3 имеют координационное число равное 6, у ионов В+3, Ве+2, Сu+2, Au+3 координационное число равно 4. для большинства ионов координационное число является переменным и зависит от природы ионов внешней сферы и от условий образования комплексов.

48. Комплексообразующая способность s-р-и d- элементов. Её причины.

Комплексообразующая способность катионов определяется следующими факторами:

Заряд катиона, радиус катиона и электронная конфигурация катиона.

Чем больше заряд катиона и меньше радиус, тем прочнее связь комплексообразователя с лигандами. Поэтому катионы s- элементов (К+, Nа+, Са+2, Мg+2 и др.) обладающие относительно большим радиусом и малым зарядом, имеют низкую комплексообразующую способность. Катионы d-элементов (Со+3, Рt+4, Сr+3 и др.), имеющие, как правило небольшой радиус и высокий заряд, являются хорошими комплексообразователями.

d-элементы имеют большое количество валентных орбиталей, среди которых имеются свободные орбитали и с неподелёнными электронными парами. Поэтому они одновременно могут быть и донорами, и акцепторами. Если аналогичной возможностью обладает и лиганд, то одновременно с σ-связью (лиганд донор, а комплексообразователь является акцептором), образуюется и π-связь (лиганд акцептор, а комплексообразователь – донор). При этом происходит увеличение кратности связи, что обуславливает высокую прочность d- элементов со многими лигандами. Эта связь называется дативной связью.