Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты приклад.docx
Скачиваний:
6
Добавлен:
19.09.2023
Размер:
6.65 Mб
Скачать

13. Эпюры напряжений при осевом растяжении – сжатии. Порядок их построения.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня. Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

17.Геометрические характеристики плоских сечений.

1.Статические моменты и моменты инерции сечения

Введем декартову прямоугольную систему координат Oxy. Рассмотрим в плоскости координат произвольное сечение (замкнутую область) с площадью A (рис. 1).

Статическими моментами сечения относительно осей x и y называются интегралы вида:

Точка C с координатами (xC, yC)

называется центром тяжести сечения.

Если оси координат проходят через центр тяжести сечения, то статические моменты сечения равны нулю:

Осевыми моментами инерции сечения относительно осей x и y называются интегралы вида:

Полярным моментом инерции сечения относительно начала координат называется интеграл вида:

Центробежным моментом инерции сечения называется интеграл вида:

Главными осями инерции сечения называются две взаимно перпендикулярные оси, относительно которых Ixy=0. Если одна из взаимно перпендикулярных осей является осью симметрии сечения, то Ixy=0 и, следовательно, эти оси - главные. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями инерции сечения

2.Теорема Штейнера-Гюйгенса о параллельном переносе осей

Теорема Штейнера-Гюйгенса (теорема Штейнера). Осевой момент инерции сечения I относительно произвольной неподвижной оси x равен сумме осевого момента инерции этого сечения Iс относительной параллельной ей оси x*, проходящей через центр масс сечения, и произведения площади сечения A на квадрат расстояния d между двумя осями.

3.Изменение моментов инерции при повороте осей

Если известны моменты инерции Ix и Iy относительно осей x и y, то относительно осей ν и u, повернутых на угол α, моменты инерции осевые и центробежный вычисляют по формулам:

Из приведенных формул видно, что

Т.е. сумма осевых моментов инерции при повороте взаимно перпендикулярных осей не меняется, т.е.оси u и v, относительно которых центробежный момент инерции сечения равен нулю, а осевые моменты инерции Іu и Iv имеют экстремальные значения max или min, называют главными осями сечения. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями сечения. Для симметричных сечений оси их симметрии всегда являются главными центральными осями. Положение главных осей сечения относительно других осей определяют, используя соотношение:

где α0 – угол, на который надо развернуть оси x и y, чтобы они стали главными (положительный угол принято откладывать против хода часовой стрелки, отрицательный – по ходу часовой стрелки). Осевые моменты инерции относительно главных осей называются главными моментами инерции:

знак плюс перед вторым слагаемым относится к максимальному моменту инерции, знак минус – к минимальному.